
I m p l e m e n t i n g a W o r k b e n c h V i e w
a n d U s i n g I A d a p t a b l e

I A D P A T A B L E A N D W O R K B E N C H

1 9 A u g u s t 2 0 0 8

TABLE OF CONTENTS

1 Goals...3

2 Defining A View...4

3 Implementing SelectionView..7

4 Things to Try...11

1 GOALS

In this tutorial you will:

• Create a new View

• Listen for the workbench selection

• Explore the use of “IAdaptable” to allow a single selection entry
to represent multiple values.

2 DEFINING A VIEW

We are going to use the facilities of the org.eclipse.ui plug-in to
define a new view.

1. Open the Plug-in Development Perspective.

2. Create a new plug-in named
net.refractions.udig.tutorials.workbench

3. Press Next to continue

Please review the

earlier distance tool

tutorial for detailed

instructions on creating

a new plug-in and

adding dependencies.

4. This time we are going to make contributions to the UI:

5. Press Finish to create the plug-in, the MANIEST.MF file for your
new plug-in will be opened.

6. Add the following plug-in dependencies to your MANIFEST.MF:
net.refractions.udig.project
net.refractions.udig.catalog

7. Save your MANIFEST.MF file, now that the plug-in knows about
the dependency on org.eclipse.ui we are able to create an
extension for the org.eclipse.ui.views extension point.

8. Switch to the Extensions tab of the Manifest editor and press the
Add button.

9. Choose org.eclipse.ui.views from the wizard and press Finish.

These steps make use of

the Plug-in Manifest

Editor; using the

Dependencies and

Extensions tabs

10. Select the new extension and set
ID: net.refractions.udig.tutorials.workbench.views
Name: Workbench Views

11. Right click on the new extension and select New > View

12. Take a moment to add the workbench_icons.zip to your project:
http://udig.refractions.net/files/tutorials/workbench_icons.zip

13. Select the new operation element and set:
id: net.refractions.udig.tutorials.workbench.views.selectionView
name: Selection
class: net.refractions.udig.tutorials.workbench.SelectionView
icon: icons/etool16/workbench.png
allowMultiple: false

14. Save your MANIEST.MF file.

15. Click on the class link to open the New Java Class Wizard

The ID and Name for

the extension point are

mostly used when

reporting exceptions in

the log.

http://udig.refractions.net/files/tutorials/workbench_icons.zip

16. Enter the following:
Name: SelectionView
Package: net.refractions.udig.tutorials.workbench
Superclass: org.eclipse.ui.part.ViewPart

17. Click the Finish button.

18. The created SelectionView class is opened for you.
package net.refractions.udig.tutorials.workbench;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.part.ViewPart;

public class SelectionView extends ViewPart {

public SelectionView() {
// TODO Auto-generated constructor stub

}

@Override
public void createPartControl(Composite parent) {

// TODO Auto-generated method stub

}

@Override
public void setFocus() {

// TODO Auto-generated method stub

}

}

The New Java Class

wizard is aware of what

you are doing and has

filled in the ViewPart

interface already.

3 IMPLEMENTING SELECTIONVIEW

Now that our view has been created we can carefully implement the
following methods

1. Now that you have some template code, let us start filling it in.
Do not worry about the constructor. The constructor is called
when your view is opened and displayed on the screen. There is
no need for you to do any work inside of it.

public SelectionView() {
//don't put anything in here

}

2. Create an init method to load in any settings from the previous
run.
You can quickly override methods by pressing Control-Space on
any blank line and choosing the method you wish to implement
from the provided list.

@Override
public void init(IViewSite site, IMemento memento) throws
PartInitException {

super.init(site, memento);
}

3. The init method is called when your plugin is going to be used;
and it provides two valuable pieces of information:

• IViewSite: is a utility class used to access workbench
resources such as the status line or workbench window. You
can retrieve the IViewSite at any point after the init method
by using getViewSite()

• IMemento: is used to hold on to information (usually
provided by the user) between runs.

4. The next method is in charge of making a user interface; the
provided parent “widget” has been created for our use (we can set
the layout and create any child widgets as needed).

private Text text;
private Text description;
@Override
public void createPartControl(Composite parent) {
parent.setLayout(new GridLayout(2,false));
 Label label = new Label(parent, SWT.RIGHT);
 label.setLayoutData(new GridData(SWT.RIGHT,SWT.TOP,false,false));
 label.setText("Selection:");
 text = new Text(parent, SWT.DEFAULT | SWT.READ_ONLY);
 text.setTextLimit(70);
 GridData gridData = new GridData(SWT.FILL,SWT.FILL,true,false);
 text.setLayoutData(gridData);

 label = new Label(parent, SWT.RIGHT);
 label.setLayoutData(new GridData(SWT.RIGHT,SWT.TOP,false,false));
 label.setText("Content:");
 description =
 new Text(parent, SWT.V_SCROLL | SWT.H_SCROLL | SWT.MULTI);
 gridData = new GridData(SWT.FILL,SWT.FILL,true,true);
 gridData.widthHint = 500;
 gridData.heightHint = 200;
 description.setLayoutData(gridData);
 //LISTEN TO WORKBENCH
}

5. You can use Control-Shift-O to sort out the required imports.

6. We are going to create a selection listener to watch the
workbench for us.
You can create this inner class at the top of the file before the
constructor.

private final class WorkbenchSelectionListener implements
ISelectionListener {
 public void selectionChanged(IWorkbenchPart part,
 ISelection selection) {
 if(selection instanceof IStructuredSelection){
 updateSelection((IStructuredSelection) selection);
 }
 else {
 updateSelection(null);
 }
 }
}
private ISelectionListener selectionListener;

7. We can now add our code to “listen to the workbench” to the
createPartControl method.

 selectionListener = new WorkbenchSelectionListener();
 ISelectionService selectionService =
 getViewSite().getWorkbenchWindow().getSelectionService();
 selectionService.addPostSelectionListener(selectionListener);

8. You can see how the getViewSite() method is used to look up and
make use of eclipse RCP facilities.

9. Although we do not use it in this tutorial, we could assign focus
to one of the controls if we were excepting input. If we did, it
would be something like: description.setFocus()

@Override
public void setFocus() {

//this is where we would put stuff
}

10. It is good practice to clean up after any resources used (things
such as widgets, colors, images and fonts). You should always be
careful with null checks and never assume that createPartContrtol
has been called.

@Override
public void dispose() {
 if(selectionListener != null){
 // if our init method failed selectionListener would be null!
 //
 ISelectionService selectionService =
 getViewSite().getWorkbenchWindow().getSelectionService();
 selectionService.removePostSelectionListener(
 selectionListener
);
 selectionListener = null;
 }
 super.dispose();
}

11. Now that we know something is happening we can quickly
inspect the value.

protected void updateSelection(IStructuredSelection selection) {
 if(selection == null || selection.isEmpty()){
 text.setText("(nothing is selected");
 return;
 }
 Object object = selection.getFirstElement();
 if(object == null){
 text.setText("(selected object is null)");
 return;
 } else {
 text.setText(object.toString());
 }
 // DESCRIBE
}

12. The IStructuredSelection is used to return multiple values; the the line
above we are checking if the first element is non null. When it comes
time to describe the selection we will iterate over all the contents.

13. We can continue to examine the value; producing a description based
on what kind of interfaces the Object supports.
We are performing this check with a simple “instance of” that will
return true of the provided object implements the interface or class
mentioned.

 // DESCRIBE
 StringBuffer buffer = new StringBuffer();
 String separator = System.getProperty("line.separator");
 for(Iterator<?> iterator=selection.iterator();
 iterator.hasNext();){

 object = iterator.next();
 buffer.append("VALUE: ");
 buffer.append(object.toString());
 buffer.append(separator);
 buffer.append("==========================");
 buffer.append(separator);
 // from net.refractions.udig.project
 if(object instanceof IMap){
 buffer.append("instance of Map");
 buffer.append(separator);
 }
 if(object instanceof ILayer){
 buffer.append("instance of ILayer");
 buffer.append(separator);
 }
 // from net.refractions.udig.catalog
 if(object instanceof IService){
 buffer.append("instance of IService");
 buffer.append(separator);
 }
 if(object instanceof IGeoResource){
 buffer.append("instance of IGeoResource");
 buffer.append(separator);
 }
 // from org.geotools
 if(object instanceof Filter){
 buffer.append("instance of Filter");
 buffer.append(separator);
 }
 if(object instanceof Feature){
 buffer.append("instance of Feature");
 buffer.append(separator);
 }
 // IADATABLE
 } // NEXT
 description.setText(buffer.toString());
}

14. Up until this point we are working with Java objects using normal
java syntax. An object can support multiple interfaces (each
representing a different API used to interact with the object) but
the choice of what API to implement has been made at compile
time.

15. Eclipse also has the facility to support additional interfaces at runtime
using IAdatable.

 // IADATABLE
 buffer.append("--------------------------");
 buffer.append(separator);
 if(object instanceof IAdaptable){
 // IAdtable is a magic interface that allows
 // a single object to return multiple interfaces
 IAdaptable adaptable = (IAdaptable) object;
 if(adaptable.getAdapter(IMap.class) != null){
 buffer.append("adapts to Map");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(ILayer.class) != null){
 buffer.append("adapts to ILayer");
 buffer.append(separator);
 }
 // from net.refractions.udig.catalog
 if(adaptable.getAdapter(IService.class) != null){
 buffer.append("adapts to IService");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(IGeoResource.class) != null){
 buffer.append("adapts to IGeoResource");
 buffer.append(separator);
 }
 // from org.geotools
 if(adaptable.getAdapter(Filter.class) != null){
 buffer.append("adapts to Filter");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(Feature.class) != null){
 buffer.append("adapts to Feature");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(URL.class) != null){
 buffer.append("adapts to URL");
 buffer.append(separator);
 }
 }
 } // NEXT
 description.setText(buffer.toString());
}

16. You can see that the getAdapter works in a similar manner to an
instance of check; returning non null if the object can be
“adapted” into the requested interface.

4 RUNNING YOUR CODE

We can now run uDig and try out your new plug-in:

1. Select Run > Open Run Dialog... from the menu bar and choose
the configuration you set-up in the previous tutorial. Be sure to
add your new plug-in to the list.

2. Once uDig is up and running select the following from the main
menu across the tope: Window > Show View > Other... to open
the Show View dialog.

3. Expand the one folder labelled Other and click on Selection and
press OK.

4. You should now see a view like the one below.

5. Try opening a Map, and adding several layers to it. Switch
between the different Map Tools. As you try these activities
watch the information displayed about the current selection.

6. The information displayed offers a breakdown of the item that
you selected, any interfaces it implements, and a record on if it
can be adapated into anything useful.

7. In the example above a country has been selected. A single
selection is provided that is an instanceof “Filter” (a geotools
class used to perform a query). This filter has the ability to adapt
to a Layer is asked (presumably the layer containing the data).

Our single selected Object capable of speaking two Java APIs;
the Interfaces it was compiled with; and the Interfaces it can be
adapted to.

5 THINGS TO TRY

Here are some additional challenges for you to try:

• Each View provides a unqiue selection; the Map Editor will
change what selection it provides based on the current tool.

• Currently, if you want to see the workbench view you have to
select Window>Show View>Other to open a the Show view
dialog. You can then use the Show view dialog to navigate to
Other >Select View.

Can you use a perspective extension make your view show up
under the main view menu?

• We have focused on listening to the workbench selection. Can
you use getViewContext() to advertise an object to the
workbench selection service?

	1Goals
	2Defining A View
	3Implementing SelectionView
	4Running your code
	5Things to Try

