
W o r k b e n c h S e l e c t i o n

U s i n g S e l e c t i o n S e r v i c e w i t h a C u s t o m V i e w

Table of Contents

1 Introduction.. 3

2 Defining A View... 4

3 Implementing SelectionView... 8

4 Running your code .. 13

5 What to do Next.. 15

Workbench Selection 2/15

1 Introduction

In this tutorial you will:

• Create a new View

• Locate an Eclipse RCP Service

• Listen for the workbench selection

• Use “IAdaptable” to allow a single selection entry to represent multiple values

This workbook answers the bigger question of “Where to Start” when making your own
application.

You will often start by contributing to the user interface - in this case we are defining a new
view. This definition consists of both an XML fragment being added to the plugin.xml
defining the title, icon etc... and a new class implementing the user interface. In other cases
you may be defining a new menu option or a new tool.

The second step will be paying attention to the what the user is up to - in this case we
locate the SelectionService for the workbench window. In other cases you may be checking
the current Map or the currently selected Layer.

Finally we will be acting when the user does something – in this case we are waiting for the
user to select something and reporting back on what we find.

Workbench Selection 3/15

2 Defning A View

We are going to use the facilities of the org.eclipse.ui plug-in to define a new view.

1. Open the Plug-in Development Perspective.

2. Create a new plug-in named net.refractions.udig.tutorials.workbench

3. Press Next to continue

Workbench Selection 4/15

Please review the
earlier distance
tool tutorial for
detailed
instructions on
creating a new
plug-in and
adding
dependencies.

4. This time we are going to make contributions to the UI:

5. Press Finish to create the plug-in, the MANIEST.MF file for your new plug-in will be
opened.

6. Add the following plug-in dependencies to your MANIFEST.MF:
net.refractions.udig.project

7. Save your MANIFEST.MF file, now that the plug-in knows about the dependency on
org.eclipse.ui we are able to create an extension for the org.eclipse.ui.views
extension point.

8. Switch to the Extensions tab of the Manifest editor and press the Add button.

9. Choose org.eclipse.ui.views from the wizard and press Finish.

Workbench Selection 5/15

These steps make
use of the Plug-in
Manifest Editor;
using the
Dependencies
and Extensions
tabs

10. Select the new extension and set
ID: net.refractions.udig.tutorials.workbench.views
Name: Workbench Views

11. Right click on the new extension and select New > View

12. Take a moment to add the workbench_icons.zip to your project:
http://udig.refractions.net/files/tutorials/workbench_icons.zip

13. Select the new view element and set:
id: net.refractions.udig.tutorials.workbench.views.selectionView
name: Selection
class: net.refractions.udig.tutorials.workbench.SelectionView
icon: icons/etool16/workbench.png
allowMultiple: false

14. Save your MANIEST.MF file.

15. Click on the class link to open the New Java Class Wizard

Workbench Selection 6/15

The ID and Name
for the extension
point are mostly
used when
reporting
exceptions in the
log.

http://udig.refractions.net/files/tutorials/workbench_icons.zip

16. Enter the following information:
Name: SelectionView
Package: net.refractions.udig.tutorials.workbench
Superclass: org.eclipse.ui.part.ViewPart

17. Click the Finish button.

18. The created SelectionView class is opened for you.

package net.refractions.udig.tutorials.workbench;

import org.eclipse.swt.widgets.Composite;
import org.eclipse.ui.part.ViewPart;

public class SelectionView extends ViewPart {

public SelectionView() {
// TODO Auto-generated constructor stub

}

@Override
public void createPartControl(Composite parent) {

// TODO Auto-generated method stub

}

@Override
public void setFocus() {

// TODO Auto-generated method stub

}

}

Workbench Selection 7/15

The New Java
Class wizard is
aware of what you
are doing and has
filled in the
ViewPart interface
already.

3 Implementing SelectionView

Now that our view has been created we can carefully implement the following methods

1. Now that you have some template code, let us start filling it in. Do not worry about the
constructor. The constructor is called when your view is opened and displayed on the
screen. There is no need for you to do any work inside of it.

public SelectionView() {
//don't put anything in here

}

2. Create an init method to load in any settings from the previous run.
You can quickly override methods by pressing Control-Space on any blank line and
choosing the method you wish to implement from the provided list.

@Override
public void init(IViewSite site, IMemento memento) throws PartInitException {

super.init(site, memento);
}

3. The init method is called when your plugin is going to be used; and it provides two
valuable pieces of information:

• IViewSite: is a utility class used to access workbench resources such as the status line
or workbench window. You can retrieve the IViewSite at any point after the init method by
using getViewSite()

• IMemento: is used to hold on to information (usually provided by the user)
between runs.

Workbench Selection 8/15

1. The next method is in charge of making a user interface; the provided parent “widget”
has been created for our use (we can set the layout and create any child widgets as
needed).

private Text text;
private Text description;
@Override
public void createPartControl(Composite parent) {
parent.setLayout(new GridLayout(2,false));
 Label label = new Label(parent, SWT.RIGHT);
 label.setLayoutData(new GridData(SWT.RIGHT,SWT.TOP,false,false));
 label.setText("Selection:");
 text = new Text(parent, SWT.DEFAULT | SWT.READ_ONLY);
 text.setTextLimit(70);
 GridData gridData = new GridData(SWT.FILL,SWT.FILL,true,false);
 text.setLayoutData(gridData);

 label = new Label(parent, SWT.RIGHT);
 label.setLayoutData(new GridData(SWT.RIGHT,SWT.TOP,false,false));
 label.setText("Content:");
 description =
 new Text(parent, SWT.V_SCROLL | SWT.H_SCROLL | SWT.MULTI);
 gridData = new GridData(SWT.FILL,SWT.FILL,true,true);
 gridData.widthHint = 500;
 gridData.heightHint = 200;
 description.setLayoutData(gridData);
 //LISTEN TO THE WORKBENCH
}

2. You can use Control-Shift-O to sort out the required imports .

3. We are going to create a selection listener to watch the workbench for us.
You can create this inner class at the top of the file before the constructor.

private final class WorkbenchSelectionListener implements ISelectionListener {
 public void selectionChanged(IWorkbenchPart part,
 ISelection selection) {
 if(selection instanceof IStructuredSelection){
 updateSelection((IStructuredSelection) selection);
 }
 else {
 updateSelection(null);
 }
 }
}
private ISelectionListener selectionListener;

4. We can now add our code to “listen to the workbench” to the createPartControl method.

 // LISTEN TO THE WORKBENCH
 selectionListener = new WorkbenchSelectionListener();
 ISelectionService selectionService =
 getViewSite().getWorkbenchWindow().getSelectionService();
 selectionService.addPostSelectionListener(selectionListener);

5. You can see how the getViewSite() method is used to look up and make use of eclipse
RCP facilities.

Workbench Selection 9/15

6. Although we do not use it in this tutorial, we could assign focus to one of the controls if
we were excepting input. If we did, it would be something like: description.setFocus()

@Override
public void setFocus() {

//this is where we would put stuff
}

7. It is good practice to clean up after any resources used (things such as widgets, colors,
images and fonts). You should always be careful with null checks and never assume that
createPartControl() has been called.

@Override
public void dispose() {
 if(selectionListener != null){
 // if our init method failed selectionListener would be null!
 //
 ISelectionService selectionService =
 getViewSite().getWorkbenchWindow().getSelectionService();
 selectionService.removePostSelectionListener(
 selectionListener
);
 selectionListener = null;
 }
 super.dispose();
}

8. Now that we know something is happening we can quickly inspect the value.

protected void updateSelection(IStructuredSelection selection) {
 if(selection == null || selection.isEmpty()){
 text.setText("(nothing is selected)");
 return;
 }
 Object object = selection.getFirstElement();
 if(object == null){
 text.setText("(selected object is null)");
 return;
 } else {
 text.setText(object.toString());
 }
 // DESCRIBE
}

9. The IStructuredSelection is used to return multiple values; on the line above we are
checking if the first element is non null. When it comes time to describe the selection we
will iterate over all the contents.

Workbench Selection 10/15

10. We can continue to examine the value; producing a description based on what kind of
interfaces the Object supports.
We are performing this check with a simple “instance of” that will return true if the
provided object implements the interface or class mentioned.

 // DESCRIBE
 StringBuffer buffer = new StringBuffer();
 String separator = System.getProperty("line.separator");
 for(Iterator<?> iterator=selection.iterator();
 iterator.hasNext();){

 object = iterator.next();
 buffer.append("VALUE: ");
 buffer.append(object.toString());
 buffer.append(separator);
 buffer.append("==========================");
 buffer.append(separator);
 // from net.refractions.udig.project
 if(object instanceof IMap){
 buffer.append("instance of Map");
 buffer.append(separator);
 }
 if(object instanceof ILayer){
 buffer.append("instance of ILayer");
 buffer.append(separator);
 }
 // from net.refractions.udig.catalog
 if(object instanceof IService){
 buffer.append("instance of IService");
 buffer.append(separator);
 }
 if(object instanceof IGeoResource){
 buffer.append("instance of IGeoResource");
 buffer.append(separator);
 }
 // from org.geotools
 if(object instanceof Filter){
 buffer.append("instance of Filter");
 buffer.append(separator);
 }
 if(object instanceof Feature){
 buffer.append("instance of Feature");
 buffer.append(separator);
 }
 // IADAPTABLE
 } // NEXT
 description.setText(buffer.toString());
}

11. Up until this point we are working with Java objects using normal Java syntax.

An object can support multiple interfaces (each representing a different API used
to interact with the object) but the choice of what API to implement has been
made at compile time.

Workbench Selection 11/15

12. Eclipse also has the facility to support additional interfaces at runtime using IAdatable.

 // IADAPTABLE
 buffer.append("--------------------------");
 buffer.append(separator);
 if(object instanceof IAdaptable){
 // IAdaptable is a magic interface that allows
 // a single object to return multiple interfaces
 IAdaptable adaptable = (IAdaptable) object;
 if(adaptable.getAdapter(IMap.class) != null){
 buffer.append("adapts to Map");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(ILayer.class) != null){
 buffer.append("adapts to ILayer");
 buffer.append(separator);
 }
 // from net.refractions.udig.catalog
 if(adaptable.getAdapter(IService.class) != null){
 buffer.append("adapts to IService");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(IGeoResource.class) != null){
 buffer.append("adapts to IGeoResource");
 buffer.append(separator);
 }
 // from org.opengis
 if(adaptable.getAdapter(Filter.class) != null){
 buffer.append("adapts to Filter");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(Feature.class) != null){
 buffer.append("adapts to Feature");
 buffer.append(separator);
 }
 if(adaptable.getAdapter(URL.class) != null){
 buffer.append("adapts to URL");
 buffer.append(separator);
 }
 }
 } // NEXT
 description.setText(buffer.toString());
}

13. You can see that the getAdapter works in a similar manner to an instance of check;
returning non null if the object can be “adapted” into the requested interface.

Workbench Selection 12/15

4 Running your code

We can now run uDig and try out your new plug-in:

1. Select Run > Run Configurations ... from the menu bar and choose the configuration
you set-up in the previous tutorial. Be sure to add your new plug-in to the list.

2. Once uDig is up and running select the following from the main menu across the tope:
Window > Show View > Other... to open the Show View dialog.

3. Expand the one folder labeled Other and click on Selection and press OK.

4. You should now see a view like the one below.

5. Try opening a Map, and adding several layers to it. Switch between the different Map
Tools. As you try these activities watch the information displayed about the current
selection.

Workbench Selection 13/15

6. The information displayed offers a breakdown of the item that you selected, any
interfaces it implements, and a record on if it can be adapted into anything useful.

7. In the example above a country has been selected. A single selection is provided that is
an instanceof “Filter” (a geotools class used to perform a query). This filter has the
ability to adapt to a Layer is asked (presumably the layer containing the data).

Our single selected Object capable of speaking two Java APIs; the Interfaces it was
compiled with; and the Interfaces it can be adapted to.

Workbench Selection 14/15

5 What to do Next

Here are some additional challenges for you to try:

• You should have noticed that each View provides a unique selection. Did you also notice
that the Map Editor will change what workbench selection it provides based on the current
modal tool.

Explore the available tools and note what content each tool thinks it is working on.

• Currently, if you want to see the workbench view you have to select Window>Show
View>Other to open a the Show view dialog. You can then use the Show view dialog to
navigate to Other >Select View.

Can you use a “perspectiveExtension” make your view show up under the main view
menu?

• Advanced: We have focused on listening to the workbench selection. Can you use
getViewSite() to advertise an object to the workbench selection service? As a side effect,
the Selection View you've just created will listen to itself

• Advanced: In this example we have checked “instance of” and “IAdaptable”. Can you
extend this example to check IResolve?

IResolve is uDig specific and represents external content. You should be very careful to
read the javadocs and not call any methods from the event thread that may block while
waiting for a WFS service on the other side of the work. If you make a mistake here it will
look like the uDig application has “hung”.

The uDig API very carefully throws IOExceptions when ever there is a chance of waiting
for an external service. If you find yourself doing a try/catch block while in an event
thread you have probably made a mistake!

Advanced: If you've done the IAdaptable workbook, you will note that your SelectionView
tells you an IService is selected and gives you its URL. Similarly with an IGeoResource.
However, it doesn't seem to be able to adapt them to URLs...go ahead and fix that.

Hint: you'll need to use the AdapterUtil class.

Workbench Selection 15/15

