
User Interface and Framework Recommendations

uDig

October 12, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Jesse Eichar, Richard Gould & David Zwiers
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7
 E-mail: jeichar@refractions.net
 E-mail: rgould@refractions.net
 E-mail: dzwiers@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

1 INTRODUCTION...3

2 USER INTERFACE RECOMMENDATIONS ..4

2.1 UDIG APPLICATION ..4
2.2 USER WORK-FLOW ..9

2.2.1 First-time Users..9
2.3 TYPICAL WORK-FLOW ...9

2.3.1 Wizards ...9
2.4 DRAG AND DROP SUPPORT..11
2.5 UDIG OBJECTS ..12
2.6 DATA EDITING ...13
2.7 MENU ORGANIZATION...13

3 FRAMEWORK REVIEW AND RECOMMENDATIONS..14

3.1 BEFORE WE START ...14
3.2 COMMUNITY...14

3.2.1 Community Review...14
3.2.2 Community Recommendations ..15

3.3 GUIDELINES ..15
3.3.1 Guideline Review...15
3.3.2 Guideline Recommendations ...16

3.4 ICONS GUIDELINES...18
3.4.1 Icon Types...18
3.4.2 Organization of icons directory ..18
3.4.3 Filename conventions ..18

3.5 IMAGERY GUIDELINES ...20
3.6 PROJECT MODEL ..21
3.7 RENDERING ..22
3.8 PRINTING ..24
3.9 TOOL KIT..24
3.10 WEB MAP SERVER...25
3.11 WEB FEATURE SERVER ...26
3.12 EXTENSION POINTS ...27

3.12.1 Tools ...27
3.12.2 Layer Operation...27
3.12.3 Style ..28
3.12.4 Renderer...28

3.13 CATALOG ...29
3.13.1 Catalog Review..29
3.13.2 Catalog Recommendations ...29
3.13.3 Catalog API Recommendations..29

- 3 -

1 INTRODUCTION

The purpose of this document is to make recommendations on ways to improve
the user interface of uDig as well as ways to improve the overall architectural
framework of uDig. The start of this document outlines the user experience with
the current version of uDig and recommends a number of important changes
that should be made to the uDig user interface. These recommendations are a
result of conducting informal user and developer interviews.

Many of the users interviewed expressed concern over the following topics:

• Drag and Drop support

• Streamlined user work-flow

• Simple introduction to uDig for first-time users

• Improved editing work-flow

• Logical Menu organization

• Preference Settings

The user experience recommendations are rounded out with a set of
recommendations to both the uDig platform extensions, and the uDig core
application.

The following extension points have been reviewed, with recommendations for
improvements:

• Tools

• Layer Action

• Decorator

• Style

• Renderer

With this set of extension point recommendations, some of the core functionality
and interfaces also require updating. Most of the updates to the core that we
recommend completing fit into the following categories:

• Model

• Rendering

• Printing

• Local Registry

• WMS

• WFS

- 4 -

2 USER INTERFACE RECOMMENDATIONS

The sections that follow document the recommendations for improvements to the
user interface.

2.1 uDig Application
The following image shows a screen shot of the current version of the uDig
application.

Figure 1 – uDig Application

- 5 -

Major components of the uDig User Interface are:

• Map Editor

Located in the center of the application. The Map Editor in the image
displays a map with four layers, each with a different style.

• Menu bar

Located at the top of the application just below the window title. The Menu
bar contains functions for all of the important parts of the application. For
example, the file menu contains items that allow a user to save and create
maps.

• Tool bar

Located below the Menu bar. The Tool bar provides access to tools and
functions used with the Map Editor.

• Status Line

2

Located at the bottom of the application window. The Status line displays
dynamic information for the user. In Figure 1, the Status line displays the
coordinates of the current mouse location in the world coordinate system.

- 6 -

• Project Explorer

Located below the Tool bar and on the left of the Map Editor. The Project
Explorer lists the known projects and the maps contained within each
project.

• Layers

Located on the right of the Map Editor. The Layers View shows the layers of
the map currently displayed in the Map Editor.

- 7 -

• Local Registry

Located below the Project Explorer. The Local Registry shows all the data
registered with the current application. Layers can most easily be added to
maps from the Local Registry.

• Properties

Located below the Map Editor. The Properties view shows the properties of
the current selection, or the currently selected feature collection.

- 8 -

• Wizards

Wizards are accessed through menus and through tool bar buttons.
Wizards assist the user with standard, repetitive, or tedious tasks. For
example, wizards facilitate creating a new map or importing a data source.
Figure 2 shows the new Map Wizard. The Next button takes the user to the
style selection page; the Finish button creates a new map with the selected
layers with default styles.

Figure 2 – New Map Wizard

Figure 3 -- New Map Wizard

- 9 -

2.2 User Work-Flow

2.2.1 First-time Users

The initial execution of uDig needs to be friendlier for first-time users. It should
start with a welcome page similar to Eclipse's. Once the workbench has been
opened, it should start with a default project and an empty map. The concept of
a default project should be hidden from the user.

2.3 Typical Work-flow

2.3.1 Wizards

The overall work flow for most wizards needs improvement. All wizards should
remember previously used settings and maintain histories, such as recent files
accessed.

Import wizards need to be based on importing a file or URL rather than a
Shapefile, Web Feature Server or Web Map Server. The first page of a file-
importing wizard should feature a file browser. When importing a Shapefile that
requires that custom properties be filled out, a checkbox should be displayed. If
checked, the next page in the wizard will allow the user to fill out those custom
properties.

Figure 3 - Welcome Page in Eclipse

- 10 -

The wizards responsible for creating new Maps or adding Layers to existing Maps
should have an add/find Layer button which can import new data into the
Registry.

Some other miscellaneous points:

• For all of the operations within uDig, instant feedback must be provided. At

the minimum, a mouse cursor change is required.

• All of the tool tips should be in the active tense.

• Each plug-in should implement context sensitive help.

• The Layer View should allow reorganization of layers by dragging them up or
down.

• In the Local Registry View, items with only one sub-item should display only
the sub-item.

- 11 -

2.4 Drag and Drop Support
This section examines Drag and Drop functionality and how it should be
incorporated into uDig. Version 0.4, the alpha release, does not support Drag
and Drop.

Drag and drop support is a very intuitive user interface construct where the user
selects an object, drags it to a new location, and drops the object. The two
components of Drag and Drop are the drop source and the drop target. The drop
source is the item selected and dragged. The drop target is the location that the
source is dropped on. The drop target is responsible for recognizing the source
and making meaningful use out of it. In addition to simply making meaningful
use out of the source item, the drop target should use defaults as much as
possible.

There are a number of drop targets that should be part of uDig:

• Map Editor

Accepted Drop Sources:
• URL - Interpreted as a layer or set of layers.

• File - Interpreted as a layer or set of layers.
• Layer from local Registry - Interpreted as a layer.
• Map - Interpreted as a set of layers.
The new layers derived from the source items are added on top of the map's
other layers.

• Layers View

Accepted Drop Sources:
• URL - Interpreted as a layer or set of layers.

• File - Interpreted as a layer or set of layers.
• Layer from local Registry - Interpreted as a layer.
• Map - Interpreted as a set of layers.
If the source is dropped over a layer, a cursor should appear above or below
the layer, and dropping the source will add layers at the cursor location.

Layers within the Layers view can be dragged within the Layers view in
order to change the order of the layers.

- 12 -

• Project Explorer

Accepted Drop Sources:
• URL - Interpreted as a project, map or page if dropped on a project.

Interpreted as layers if dropped on the map.
• File - Interpreted as a map or page if dropped on a project. Interpreted

as layers if dropped on the map.
• Map - Interpreted as a map if dropped on a project. Interpreted as

layers if dropped on the map.
• Page - Interpreted as a page if dropped on a project.
• Project - Interpreted as a project.

• Local Registry

Accepted Drop Sources:
• URL - Interpreted as a data source.
• File - Interpreted as a data source.

2.5 uDig Objects
There are several different types of uDig objects: Registry, Map, Project, Page and
Layer. Each of these objects requires some changes in order to meet our
requirement of being user-friendly.

The Registry needs to be renamed to Catalog as that is more reasonable and less
programmer-oriented. Objects within the Registry itself should not be duplicated
and should be re-nameable. Web Map Server layers within the Registry should
display their icon, retrieved from the Capabilities document.

The Project should have options to copy Maps and Pages within it. It could also
contain a special kind of Map or Page called “new map” or “new page” which,
when clicked, will bring up the new Map or new Page Wizard.

When creating a Map, a default name should be provided which can be changed
later. When adding a Web Map Server to a Map, currently every Layer contained
within the WMS is added. One should be able to add specific Layers. It should
also be possible to delete a Layer from a Map.

Each Layer should have an associated icon that provides useful information
about its state.

All of these objects should have their own properties page.

- 13 -

2.6 Data Editing
Data editing currently demonstrates what can be done. There is a button on the
tool bar, but not within a menu, that allows the user to begin editing. Once a
feature is selected using the selection tool, the vertex manipulation tool can be
used to add or move vertices. Improvements that should be made to the editing
user interface are as follows:

• The begin/end edit mode should be accessible through the main menu and
the map's context menu in addition to a tool bar button.

• The user should not be required to select a feature using the selection tool.
The vertex manipulation tool should select a feature when the feature is
clicked on.

• Clicking in an area where no feature currently exists should start a new
feature. By clicking in the display area using the vertex tool the user should
be able to create a new feature without being required to choose a new tool.

• As feature geometries are manipulated, the geometries should be validated,
preventing the user from creating invalid geometries. For example, if a vertex
is moved to an illegal position, the move should be undone and the user
should be notified that they have made an illegal modification.

2.7 Menu Organization
The menu system in uDig needs to be defined. The addition of a menu for each of
the Layer, Map and Project objects will allow users to easily locate and perform
actions on them.

• The Layer menu should have a “Clear Selected Features” button.

• The Map menu should have an entry for each of these properties:
“Start Editing”, “Stop Editing”, “New Feature” and “Clear Selected Features”.

• The Project menu should have an entry for “Properties”.

- 14 -

3 FRAMEWORK REVIEW AND RECOMMENDATIONS

This section provides a thorough review of the existing uDig Framework. The
focus is on the usefulness and accessibility of uDig as a development platform.

While the structure of the application will be discussed, the focus is on the
Plugin-Developer, and the community we wish to build around uDig as a GIS
platform.

3.1 Before we start
Before we start the review process, we outline two important recommendations:

• GIS Platform. In keeping with the example provided by other RCP projects,
the uDig Framework should be called a Platform. GIS Platform seems to be a
sufficiently accurate term.

• Catalog. The current concept of a Local Registry (a mirror of the OGC Web
Registry Service) has proved confusing at the User Interface level. We will carry
the recommendation over to the GIS Platform.

3.2 Community
We have made the following preparations for a more active uDig development
community.

• Community Wiki – for collaborative documentation including a User’s Guide

• Email list – used for project communications

• Issue Tracker – customized for this project, with specific instructions and a
reduced number of fields

• Releases

• Documents and Reports

• Version Control

3.2.1 Community Review

The email list has met with great success. New developers show up weekly and
are enthusiastic. Similarly the series of releases has helped greatly in sorting out
installation and connection issues. Community members have been active in
creating bug reports in our Issue Tracker.

Less successful have been our documents and reports. The only report to gather
significant feedback has been our comparison of JUMP, Eclipse and Netbeans.

We have yet to receive a request for version control access.

- 15 -

3.2.2 Community Recommendations

We plan to set up version control and website space for plug-in developers. In
addition to gathering up uDig contributions in a single location this will help
keep the email list alive and happy.

3.3 Guidelines
The existing Project Guide1 provides a number of important guidelines2 for
framework development:

• Sensible Defaults: this system is "user friendly"; make the right choices
rather than complicate matters.

• Code for Developer Convenience: this system is designed to be extended by
others. A principle of "least surprise" applies to developers as well as users.

• Eclipse RCP Guideline: anything that references a “resource” is not intended
for RCP developers.

• Eclipse User Interface Guidelines: Eclipse provides a strong set of user
interface guidelines. We intend to follow them.

• Decisive Coding (a.k.a. “code like you mean it”): this project is on a short
time line, so don't waste time in "Analysis Paralysis". We are developers; if we
change our mind we can change our code. There is time enough for the code
base to be entrenched later.

These are the criteria we have defined for GIS Platform development.

3.3.1 Guideline Review

These guidelines have held up reasonably well under heavy coding strain.

The practice of using sensible defaults has not yet begun in earnest (as this
document has pointed out at numerous occasions).

Coding for developer convenience has been hampered by our growing
understanding of what is considered “surprising”. While we feel comfortable
providing what is expected for OGC-based GIS development, the impressive
precedent set by the Eclipse platform is a hard act to follow.

The Eclipse RCP Guideline has proved easy to follow, as a violation of this
guideline prevents release. The main useful ingredient this guideline prevents is
the use of IResource. For many developers the availability of IResource (roughly
similar to a file handle or proxy) represents the usefulness of the Eclipse
platform. We may be asked to include this construct at a later time.

The Eclipse User Interface Guidelines have become dated over time; the recent
release of Eclipse 3.0 has seen an overhaul of Icon standards in particular. This

1 Project Guide, http://docs.codehaus.org/display/uDig/Project+Guide

2 Guidelines, http://docs.codehaus.org/display/uDig/Guidelines

- 16 -

lack has been addressed with documentation3 based on observation of Eclipse
3.0 practice.

The practice of decisive coding has benefited this project in many ways. This is a
luxury we will enjoy as long as possible; as the project picks up steam we will be
unable to retain this flexibility. Our one area of indecision concerns the
relationship between a Layer and a Renderer.

3.3.2 Guideline Recommendations

We have discovered the Eclipse House Rules4 as an interesting target for where
we should be heading:

Extender Rules

Contribution: Everything is a contribution
Conformance: Contributions must conform to expected interfaces
Sharing: Add, don’t replace
Monkey See/Monkey Do: Always start by copying the structure of a similar plug-in
Relevance: Contribute only when you can successfully operate
Integration: Integrate, don't separate
Responsibility: Clearly identify your plug-in as the source of problems
Program To API Contract: Check and program to the Eclipse API contract
Other Rule: Make all contributions available, but put those that don't typically apply to
the current perspective in an Other... dialog
Adapt to IResource: Whenever possible, define an IResource adapter for your domain
objects
Strata: Separate language-neutral functionality from language-specific functionality and
separate core functionality from UI functionality
User Continuity: Preserve the user interface state across sessions

Extender

Invitation: Whenever possible, let others contribute to your contributions
Lazy Loading: Contributions are only loaded when they are needed
Safe Platform: As the provider of an extension point, you must protect yourself against
misbehavior on the part of extenders
Fair Play: All clients play by the same rules, even me
Explicit Extension: Declare explicitly where a platform can be extended
Diversity Rule: Extension points accept multiple extensions
Good Fences: When passing control outside your code, protect yourself
User Arbitration: When there are multiple applicable contributions, let the user decide
which one to use
Explicit API: separate the API from internals
Stability: Once you invite someone to contribute, don’t change the rules
Defensive API: Reveal only the API in which you are confident, but be prepared to reveal
more API as clients ask for it

Publisher
License Rule: Always supply a license with every contribution

3 Icons, http://docs.codehaus.org/display/uDig/Icons

4 *Erich Gamma, Kent Beck - Contributing to Eclipse: Practices, Plug-Ins, Patterns

- 17 -

These rules should gradually be adopted as the project moves towards
completion.

Several should be adopted immediately:

• User Continuity: Preserve the user interface state across sessions.
We have several examples where the user supplied state is not being retained,
particularly during the use of Import Wizards.

• Fair Play: All clients play by the same rules, even me.
We should adopt this guideline to prevent direct dependencies between
modules and to ensure our extension-points are useable.

It is too early for the adoption of several rules (such as Stability); others (such as
Adapt to IResource) don't apply.

- 18 -

3.4 Icons Guidelines
The Eclipse User Interface Guidelines have relaxed somewhat. This section
documents these changes.

3.4.1 Icon Types

TYPE type description

local toolbar lcl found on the far right of the title area of a view

toolbar tool used in cascading menus, and the global toolbar

view view found in the top, left corner of a new view

model object obj used in the tree, list, properties views, and editor tabs

overlay ovr placed on top of model object to indicate a change

wizard banner wizban used in wizard dialog windows

3.4.2 Organization of icons directory

DIRECTORY disabled Enabled Other Banner Size Placement

local toolbar dlcl16/ elcl16/ 16x16 left & top clear

toolbar dtool16/ etool16/ 16x16 left & top clear

view dview16/ eview16/ 16x16 left & bottom clear

model object obj16/ 16x16 centered, bottom clear

overlay ovr16/ 7x8 one pixel white outline

wizard banner wizban/ 55x45 bottom left on blue
gradient

PALETTE color gray scale color color

*perspective & fastview icons require the right and bottom edges to be clear.

3.4.3 Filename conventions

The original guidelines documented two directories, clcl and ctool, which allowed
a full colour palette; for Eclipse 3.0 elcl and etool have supplanted this use.

FILENAME SUFFIX lcl tool view obj ovr wizban
invoke a wizard, or graphics in a wizard _wiz _wiz

invoke executable file _exec
in an editor view _edit
in a navigator view _nav _nav _nav

do not fit into a category _misc _misc
represent tasks that user can do _tsk _tsk _tsk _tsk
toggles the working mode of the view _mode
found in a menu _menu

- 19 -

found in a property sheet _ps _ps
used in the tree, list, or property view _obj

model object icons on object palettes _pal
commands that engage the system _co _co

- 20 -

3.5 Imagery Guidelines
The GIS Platform makes use of a consistent set of imagery when defining icons
and application graphics:

Eclipse Guidelines provides the following representations:

This use of common imagery provides a unified look and feel to the GIS Platform.

- 21 -

3.6 Project Model
This section discusses the uDig data model and is primarily a way to provide
context for the reader to understand the following sections.

At the top of the data model is the project class. The project contains maps and
pages, which in turn contain viewport models, context models and layers - the
rest of the data model. Because projects contain maps, pages and layers, they
are responsible for creation and deletion. Projects in uDig are organized as single
files; all of the maps and pages contained by a project are saved into the file. As
a result projects are responsible for managing, saving and loading maps and
pages as well as themselves.

Map objects contain one context model and one viewport model and have little
functionality other than as a way for accessing the models and being related to
the concept of a map. The context model contains the layers of a map and
notifies interested listeners when the layer state somehow changes. A viewport
model encapsulates the view of the data. In other words, it specifies the area of
the data being viewed and what coordinate reference system the view, not the
data, is in.

The layer provides access to the “real” data and models map related information
such as the style used for the layer, the z-order of the layer, the display name of
the layer, the visibility of the layer and the selectability/editability of the layer.

The page is the last piece of the data model and is discussed in more detail later.
It is sufficient here to say that a page represents how a map should be printed on
paper. A page contains boxes that contain decorators and maps.

The model API is satisfactory as is, however the viewport model interface needs to
be separated into different interfaces: viewport model and viewport operations,
because the current API has some convenience methods that have proved
confusing to third party developers. For example, there is a method for obtaining
the display size. This leads a developer to believe that the viewport model is
responsible for controlling the display area, which is not the case.

- 22 -

3.7 Rendering
The rendering architecture is organized as a set of renderers, a timer that polls
the renderers for updates and a Java Advanced Imaging (JAI) tree that combines
all the rendered images from the renderers into one image that is displayed.
Figure 4 illustrates the current behaviour of the rendering system.

L1 through L4 are four renderers, each rendering a different layer. The x-axis
shows time increasing from left to right. The solid lines beside L1-L4, beginning
with a bar and ending with an arrow, show the execution of the renderers. The
bar indicates the time when the first data arrives from the data source, and the
arrow indicates the end of execution. The dotted lines indicate that the rendered
image is complete. The vertical lines indicate the rasters being merged and
displayed; the black dots indicate which layers are being merged. The line beside
T is the timer thread. As Figure 4 illustrates, the timer currently wakes up at
regular intervals and obtains the image raster from each layer, regardless of
whether the image has begun rendering. In addition, because the timer thread
wakes every second, each renderer can initiate a display update. The last point
to observe is that all layers are merged each time an update occurs.

L 1

L 2

L 3

L 4

T

Figure 4 - Current JAI Rendering System

- 23 -

Figure 5 illustrates some improvements on the current implementation.

The first improvement is illustrated in the left-most vertical line. The update
thread only merges rasters that have begun rendering. The second improvement
is that the timer thread is reset each time a renderer initiates an update. Finally,
adjacent rasters that have been completed are kept in a buffer so they can be
merged as one raster. These improvements have yet to be implemented.

L1

L2

L3

L4

T

Figure 5 - Recommended JAI Rendering System

- 24 -

3.8 Printing
The printing framework needs significant improvement, especially with regard to
printing Web Map Server maps at higher DPIs. The Layout system has been
renamed to Template and a basic implementation has been created and needs to
be extended.

The current implementation is capable of simply printing out a Map with a title.
An extension point has been created, but is not completely usable as the printing
system uses the first Template it encounters.

Ideally we would like to implement a system that allows users to create their own
Templates. They could then be used to define a Page, which is sent to the printer.

A Template is flexible and adapts to various page sizes. Upon creation, the
Template is given a page size and orientation and provides a properly formatted
Page. It should also be possible to create Pages by deriving them from other
Pages.

3.9 Tool Kit
Currently we are using the Geotools data access libraries. These are categorized
into Feature providers and Image providers. Both groups take in a set of
parameters to produce the requested data. One of our recommendations is to
make all data producers accept a single parameter with all others being filled
using sensible defaults. This will allow a File, URL or IP to be interpreted
automatically, creating a new data source.

While Image data providers currently have a sense of a layer provider, and a
collection of layers, Image data providers do not provide easy access to data
through a single parameter constructor. We would encourage the Image data
libraries to include such a constructor.

Feature providers need considerably more effort to complete an automated
constructor. This is mainly due to the lack of singular layer support within the
current API. We would encourage the Geotools community to provide two forms
of data access, one as a singular layer, the other as a collection of layers. Of
course both access methods would be capable of being queried and written to.

Upon the division of the Feature providers’ current API, we feel it would be
relatively simple to add default constructors for most singular sources, including
ESRI Shape files and GML files. We would also like to see sensible defaults with a
singular constructor for multi-layer Feature providers, including WFS, PostGIS,
and Oracle Spatial.

- 25 -

3.10 Web Map Server
The Web Map Server implementation is a part of the Geotools project. Currently
it is capable of reading maps from all versions of the WMS specification. The
next implementation will see more key functionality added.

One of the most important things is the implementation of the GetFeatureInfo
request, allowing information to be retrieved regarding features at a point in the
map.

The ability to make requests using POST rather than GET is also quite
important. This allows us to make larger requests and utilize SLD-enabled Web
Map Servers.

There are also four requests to be implemented to allow communication with
SLD-enabled WMSs.

- 26 -

3.11 Web Feature Server
The Web Feature Server data access library resides within the Geotools project.
Currently this extension has been implemented and tested to read data from
OGC compliant WFS instances. The creation of this client library spawned the
creation of a sophisticated XML schema and document parser.

The parser successfully parses and validates XML documents using their
instance schemas. The inheritance within the schemas is used in conjunction
with well known schemas to provided direct parsing of the XML document into
user defined Java objects. This XML parsing framework is also capable of
streaming objects, or publishing the objects to the remainder of the system as
they become available. Some of the recommended improvements reside within
the parser framework, while other improvements are directly related to the WFS
client. For a more detailed explanation of the parsing framework see Open
Source GML Parsing (http://udig.refractions.net/docs/osgp.pdf).

Many of the recommended improvements will also benefit the GML file reader,
which streams GML data from disk. This was built as a proof of concept, as
parsing large GML documents was a pre-requisite to a WFS client library.

A large portion of the functionality required to write transactions to a WFS server
instance has also been completed, but as of yet is only partially tested. To
provide reliable write access to a WFS extension, more comprehensive testing
should be completed.

The current WFS implementation has not been thoroughly performance tested,
but at first glance there are several directions that ought to be pursued for this
WFS client library to perform well. Some speed increases may be realized
through multiple concurrent requests, optional data validation, and improved
client side transaction caching.

Although in most cases concurrent requests would not greatly affect the
performance of a WFS instance, some vendors' WFS servers would benefit. In
cases where it appears to be vendor specific, metrics should be included to split
requests appropriately.

While most major XML parsers perform some form of validation, many of these
parsers also optionally disable validation. The WFS client should also include
this functionality, reducing the overhead for parsing complex data components.

Lastly, operations cached against a particular uncommitted transaction may be
better stored to improve the performance of reading the results of a query. This
would enable improved feature modification on the client side with respect to
pending transactions.

Although the WFS client library does not currently support locking, we do not
recommend supporting server-side locking until the user interface requires
locking functionality.

- 27 -

3.12 Extension Points
Extension points provide programmers with a way to write extensions for uDig.
In order to be useful, an extension point must be well defined and very stable.
This section discusses the current extension points and makes recommendations
with regards to how the current extension point definitions can be improved.

3.12.1 Tools

The current tool extension point allows third-party developers to develop new
tools for uDig and is one of the most used points of extension. The current
implementation specifies three different types of tools and two ways of grouping
tools. The three types of tools are as follows:

• Action Tool - A single fire tool that performs a single action and is not modal;
a button that sets the viewport so it frames the current selection is an example
of an action tool.

• Modal Tool - A tool that has on and off modes. When a modal tool is "on" it
waits for user input and reacts on it. An example of a modal tool is the zoom
tool.

• Background Tool - A tool that is always active in the background. A typical
background tool would be limited to providing user feedback. An example is
the cursor position tool that displays the current mouse location in world
coordinates.

The two grouping mechanisms are:

• Category - A collection of tools that are always available but are logically
similar and therefore grouped together.

• Mode - A collection of tools that are similar and are grouped together but are
only available when a mode is active. An example would be editing tools.

Tools can be assigned to appear in the tool bar, the menu, and the status line.

Most of the tool extension point is satisfactory; all the current tools are created
using the current definition, however, the current definition is not scalable
enough. If a large number of tools were added, then it would be useful to have
the concept of a tool palette. To address this need the current extension point
definition should be modified so developers can add tools to views (the Eclipse
concept of a view). In addition, standard tool views should be defined so tool
developers are not required to create views in addition to tools. View creation
would be optional.

3.12.2 Layer Operation

A layer operation (“op”) extension is an extension that performs an operation on
one or more layers in a map. Since the layer op extension point is not yet
defined this section is a recommendation. The layer op extension point will allow
programmatic access to a layer. Layer operations would be listed under the layer
menu and in context menus in the layer view when a layer is right-clicked. In
order to provide a scalable solution the layer operation extension point will

- 28 -

require an extension to declare a filter that will allow the menu managers to
determine whether the layer operation is interested in the layer. If it is, then the
operation will be added to the menu. Otherwise the operation will be left out of
the menu.

3.12.3 Style

The style extension point is defined so that special purpose renderers are tied to
the SLD styles. For example, it is possible for a renderer to render from CAD
formats that might have special requirements for styling. Styles also reduce the
amount of refactoring that is required to port renderer implementations into
uDig. The current specification requires that a style extension provide a style
editor - a style that can create a style memento. A style memento is a flexible
uDig construct that is used to save the style. Since renderers create styles uDig
does not need to know about the concrete style class; only the renderer
responsible for the style needs to know the concrete style class. Thus far the
style extension point has successfully satisfied its requirements.

3.12.4 Renderer

A Renderer interprets spatial data and represents the data in a visual manner.
In uDig there are different types of renderers that can render different types of
data. For example, a feature renderer can render feature data. A WMS renderer
can communicate with and render images from a web map server.

The current API requires that a Renderer extension must create: a RenderMetrics
class, which can provide metrics about how fast a renderer can provide its
service; and, a RenderMetricsFactory class, which can determine if a data source
can be rendered by the renderer and can create RenderMetrics that provide
metrics with regard to a particular data source. Furthermore, a renderer
extension must provide an implementation of the Renderer Interface, normally by
extending the abstract superclass that handles threading and event notification
for the renderer.

The renderer extension point has had three different extensions and has satisfied
all their requirements well. However, for the sake of simplicity a toolkit object
should be provided that the renderer can use. This would provide the user with
a buffered image that the renderer could write on and provide a single interface
for obtaining all information that the renderer may need. In the current
implementation the Abstract superclass that each renderer is intended to
subclass provides such an API. However, because the AbstractRenderer
performs many different functions it is difficult to tell what methods and fields
the extension should use. Separating the functionality and data access methods
into a separate class would make the distinction more explicit and reduce
programming errors.

- 29 -

3.13 Catalog
As mentioned at the start of this section the biggest recommendation for Catalog
has been a name change (from Local Registry).

3.13.1 Catalog Review

Catalog services have been well imagined and require very little in the way of
functional modification.

In practice we have found using the existing RCP Import Wizard extension point
sufficient for managing the addition of data sources.

User Interface and Data Discovery requirements will be pushing several changes.
We will need to add the following:

• Simplified registration allowing for Drag and Drop support

• Catalog Services version 2.0

3.13.2 Catalog Recommendations

In order to support flexibility as the toolkit APIs change, we recommend the use
of IAdaptable to support using a variety of data access and discovery services
while maintaining a single registry.

• Registry.getAdapter(Class class)

Toolkit Access:

• GeoAPI Catalog (GeoAPI) – captures OGC Catalog Services version 1.0

• Discovery (pending) – captures OGC Catalog Services version 2.0

• Repository (Geotools) – allows for cross data source operations

Catalog will continue to support the Registry, and RegistryEntry natively.

3.13.3 Catalog API Recommendations

To simplify the registration of data sources the following API is proposed:

• Object CatalogPlugin.open(File file)

• Object CatalogPlugin.open(URL url)

• Object CatalogPlugin.connect(ParameterValueGroup params)

