
To o l P l u g - i n Tu t o r i a l

A d d i n g a m e a s u r e t o o l

Table of Contents

1 Introduction.. 3

2 Create a New Plug-in... 4

3 Manifest.. 7

4 Import Icons and Pointers... 9

5 Extensions.. 11

6 Tool Definition... 14

7 Tool Implementation... 16

8 Testing the Plugin... 19

9 Question and Answer... 21

10 What to do Next.. 22

Tool Plug-in Tutorial 2/22

1 Introduction

The uDig application is built on the “Eclipse Rich Client Platform” that offers an alternative
to traditional application framework design. The RCP Platform is customized through
extensions that contribute to extensions points. The good news is that everything is
consistent, everything from adding a tool to creating an application is done in the same
manner.

After completing this tutorial, you will have gained the skills to:

• Create a new Plugin

• Define a new Extension

• Implement a new Tool Extension

• Update the map from within a tool

We are going to create a tool that returns the distance between the point the mouse is
clicked and the point the mouse is released.

Tool Plug-in Tutorial 3/22

Click

Release

Drag

X Meters

2 Create a New Plug-in

In this section we are going to create a new plug-in. Eclipse plug-ins are managed bundles
of code (often packaged up as a jar or folder).

Our focus in this section is on creating a plug-in and getting the name and version
information correct. We will also provide a list of uDig plug-ins we need in order to make a
good tool.

An Eclipse class called Platform is responsible for loading up our plug-in when it is needed.
The Platform class will use the information we provide to make sure all our requirements are
met. Plug-ins are loaded up into separate class loaders; and Java class loader restrictions
are in place so you really can only talk to plug-ins you depend on!

1. Open up Eclipse using the workspace configured for uDig SDK development.

2. Select Window > Open Perspective > Other and choose the Plug-in Development
perspective from the list.

3. Choose File > New > Project... from the menu bar.

Tool Plug-in Tutorial 4/22

The Plug-in
Perspective will
contain a few
Views and
Editors you may
not be familiar
with from day to
day Java
programming.

4. Select Plug-in Project and press Next.

5. Create a name for the plug-in by entering
Project Name: net.refractions.udig.tutorials.distancetool

6. Press the Next Button

Tool Plug-in Tutorial 5/22

7. Accept the default values for Plug-in Content.

8. Press Finish to create your new project.

Tool Plug-in Tutorial 6/22

3 Manifest

Your new project is both: a plug-in project (with a MANIFEST.MF file for the Eclipse Platform
class to read); and a Java project with .classpath file for the eclipse compiler to read.

Lets have a look at what information is MANIFEST.MF:

1. In the Package Explorer navigate to the plug-in created in the previous section. Find
the file META-INF/MANIFEST.MF and double click to open the plug-in manifest editor.

2. The overview tab shows much of the information you entered when you created the
plug-in project.

3. Switch to the Dependencies tab.
(the tabs are located at the bottom of the editor area)

4. Click on the Add button under Required Plug-ins.

Tool Plug-in Tutorial 7/22

5. Select the net.refractions.udig.project.ui plug-in from the list.

6. At this point you need to save your work (using File > Save).

7. Changes to the plug-in project (ie MANIFEST.MF file) are used to update the Java
project (ie .classpath file). If you do not save your work you will not be able find the tool
classes used later in the tutorial.

Tool Plug-in Tutorial 8/22

You can use the
field at the top of
the dialog to filter
the plug-in list.

Use “*project.ui”
to quickly find the
needed plug-in.

4 Import Icons and Pointers

You can use normal image files to define tool bar icons, and cool pointers.

By convention icons are organized into the following directories:

icons/etool16 Enabled icon used in application tool bar.
(16x16 left and top clear)

icons/pointers Used to define a cursor
(32x32)

Lets download the images used for this tutorial:

1. Download the following file:
http://udig.refractions.net/files/tutorials/distance_icons.zip

2. Select File > Import to open up the Import wizard

3. Choose General > Archive File and press Next

Tool Plug-in Tutorial 9/22

If you are using
this work book
in a lab setting
you will find the
file on your DVD.

http://udig.refractions.net/tutorials/distance_icons.zip

4. Fill in the following details on the Archive File page:
From archive file: distance_icons.zip
Into folder: net.refractions.udig.tutorials.distancetool

5. Press Finish

6. An icons directory will be created.

Tool Plug-in Tutorial 10/22

5 Extensions

Programming with extensions is accomplished in two parts; filling in a bit of information
(letting the Eclipse Platform class know what you are up to); and then implementing a Java
class to do the work.

The Platform class acts as a mediator; hooking up the distance tool we define here to the
uDig application that will display it on the tool bar and make use of the tool when the user
asks.

The information we provide is stored in a file called plugin.xml; the Platform class reads in
all the plugin.xml files when the application is started it and wires up everything.

1. Return to your plug-in MANIFEST.MF editor, and switch the the Extentions tab.

2. Press the Add button

Tool Plug-in Tutorial 11/22

This is becoming
a popular
approach; web
applications
made with the
Spring
framework often
use a single xml
file to wire
everything
together.

3. Select net.refractions.udig.project.ui.tool from the list of extension points.

4. Click Finish

5. Enter the following Extention Details:
ID: <Make it Empty>
Name: Distance Tool Example

Tool Plug-in Tutorial 12/22

The id and name
provided here is
used by the
Platform class to
log errors
associated with
your tool.

There is a bug
with icon lookup
which is why we
made the id
empty.

6. Change to the build tab of your MANIFEST.MF editor. Make sure your icons folder and
plugin.xml is checked as part of the Binary Build.

7. This step will ensure that the icons are included when the plug-in is bundled up into a
jar. Proceed to the next section and we will define our distance tool.

Tool Plug-in Tutorial 13/22

6 Tool Defnition

We can now use the extensions tab to define our distance tool. A single plug-in may define
multiple tools, and indeed provide contributions to several extension points.

To create a new tool:

1. Right click on newly added net.refractions.udig.project.ui.tool in the Extensions tab,
and select New > modalTool

2. Fill in the following value for id: net.refractions.udig.tutorials.distancetool.

3. Enter a tool tip message into tooltip:
Measure the surface distance between two points

4. For icon, click on the browse button and select: icons/etool16/measure_mode.gif

5. Fill in the following for name: Distance

6. For onToolbar: select true from the list

7. For the tool categoryId: net.refractions.udig.tool.category.info

Tool Plug-in Tutorial 14/22

8. Save your work.

9. We are going to add a child element that specifies the cursor.

10. Right click on Distance and select New > cursor.

11. For the image: use the browse button to select: icons/pointers/measure_source.gif

12. Fill in the location of the hot spot where the user clicks:
hotSpotX: 10
hotSpotY: 10

13. Save your work before continuing to the next section.

Tool Plug-in Tutorial 15/22

7 Tool Implementation

Now that all the description is out of the way we can implement the DistanceTool class.

1. Return to the Distance (modalTool) element
(it is child of net.refractions.udig.project.ui.tool)

2. Enter in the following for class: net.refractions.udig.tutorials.distancetool.DistanceTool

3. Click the class link shown above.

4. A New Java Class wizard is opened, the needed details should have be already filled in
for you.
Constructors from superclass: uncheck

Tool Plug-in Tutorial 16/22

5. Press Finish

6. The following file will be created for you.

package net.refractions.udig.tutorial.distancetool;

import net.refractions.udig.project.ui.tool.SimpleTool;

public class DistanceTool extends SimpleTool {

}

7. Add the following field, to jot down where the user clicked.

import com.vividsolutions.jts.geom.Coordinate;
public class DistanceTool extends SimpleTool {
 /** records where in the world the user clicked */
 Coordinate start;

}

8. Right click on the editor and select Source > Override/Implement Methods

9. Expand SimpleTool node and check the following:

● Check onMousePressed(MapMouseEvent)

● Check onMouseReleased(MapMouseEvent)

10. Click on the OK button to create these methods.

11. Implement the onMousePressed(MapMouseEvent) method

 @Override
 protected void onMousePressed(MapMouseEvent e) {
 start=getContext().pixelToWorld(e.x, e.y);
 }

12. Implement the onMouseReleased(MapMouseEvent) method.
We are using the utility JTS class to calculate the distance between two coordiantes.

@Override
protected void onMouseReleased(MapMouseEvent e) {
 Coordinate end=getContext().pixelToWorld(e.x, e.y);
 try {
 double distance=JTS.orthodromicDistance(
 start, end,
 getContext().getCRS());
 displayOnStatusBar(distance);
 } catch (Exception e1) {
 displayError();
 }
}

Tool Plug-in Tutorial 17/22

13. Implement the displayOnStatusBar(double) method.
We need to

private void displayOnStatusBar(double distance) {
 final IStatusLineManager statusBar =
 getContext().getActionBars().getStatusLineManager();

 if(statusBar==null){
 return; // shouldn't happen if the tool is being used.
 }
 int totalmeters=(int)distance;
 final int km=totalmeters/1000;
 final int meters=totalmeters-(km*1000);
 float cm = (float) (distance-totalmeters)*10000;
 cm = Math.round(cm);
 final float finalcm=cm/100;

 getContext().updateUI(new Runnable(){
 public void run() {
 statusBar.setMessage("Distance = "+km+"km "+meters+"m "+finalcm+"cm");
 }
 });
}

14. Implement the displayError () method

private void displayError() {
 final IStatusLineManager statusBar =
 getContext().getActionBars().getStatusLineManager ();

 if(statusBar==null)
 return; // shouldn't happen if the tool is being used.

 getContext().updateUI(new Runnable() {
 public void run() {
 statusBar.setErrorMessage("Unable to calculate the distance");
 }
 });
}

15. The file will not compile as we have a few imports to sort out.

16. Press Ctrl-Shift-o to import any needed classes. You will have one conflict to sort out,
please choose: org.geotools.geometry.jts.JTS

17. Save your file, this should refresh the project and clean up any remaining error
message.

Tool Plug-in Tutorial 18/22

8 Testing the Plugin

We can now run uDig and try out your new plug-in:

1. Select Run > Run Configurations... from the menu bar and choose the configuration
you set-up in the previous tutorial

2. Go to the Plug-ins tab and check that “Launch With” is set to “plug-ins selected
below only”. The actual plugins selected were defined by the udig.product – we are
going to add our new plugin to this list next.

3. Select your new plugin, listed at the top under “Workspace”

4. Click Run.

5. After the application has started up we can put together a map to try out the distance
tool.

6. Select File > New > New Map

7. Change to the Web view and choose a WMS the demo.opengeo.org web map server
from the list.

8. Select the bluemarble layer and press Finish.

9. In the palette on the right open up the Info Tools category and select Distance Tool.

10. You can now use the Distance Tool to drag from one point to another on the Map.

11. The distance will be displayed in the status bar.

Tool Plug-in Tutorial 19/22

9 Question and Answer

Here are some common questions:

Q: My distance tool does not show up
A: Did you open the information tool menu and look in the drop down list?
A: Check your plugin.xml file; make sure the “id” is unique; check that it does not conflict
with the extension point id that contains it.

Q: Unable to calculate the distance!
A: The projection of your data must be defined, you may see this if you are working with a
shapefile that does not have a ".prj" file defined.

Q: Connection error has occurred
A: Sounds like the data you were looking for is unavailable, try a different WMS.

Q: How can I look at the source code examples
A: It is included in the SDK:

1. Make sure you have the Plug-in Development Perspective open

2. Open the Plugins tab and scroll down the the code examples

3. Right click and Import As a Binary Project

4. The project will be copied into your workspace.

Tool Plug-in Tutorial 20/22

10 What to do Next

Here are some additional challenges for you to try:

• Tools are organized into "Categories" each with their own keyboard short-cut, the
Distance Tool is in the category "Information".

Create your own Category

• Plug-ins have a life cycle (controlled by the Platform class); the start method is used to
provide your Activator with a BundleContext (used to access resources like Icons).
The ID for your Plugin is used so often that it is worth making a constant in your activator
for others to refer to. This may already be done by the wizard.

public static final String PLUGIN_ID =
 "net.refractions.udig.tutorials.distancetool";

Tool Plug-in Tutorial 21/22

• Your activator can also be used to send log messages; and check debug options (from
the TRACING page)

To enable this, add a “.options” file to your plug-in next to plugin.xml. The presense of a
“.options” file tells the system that you have trace options available.

net.refractions.udig.tutorials.distancetool/debug=true
net.refractions.udig.tutorials.distancetool/debug/distance=true

At runtime use your Activator to check if tracing is turned on, put the following in the start
method:

if(isDebugging() &&
 "true".equalsIgnoreCase(Platform.getDebugOption(PLUGIN_ID + "/debug"))){
 Status status = new Status(IStatus.INFO,PLUGIN_ID,"Distance Tool Started");
 getLog().log(status);
}

Now, output your distance results to the console log. This information is currently being
displayed in the status bar (eg. 3420 km)

• Advanced: You can select the "Information" category by pressing "i".
Hook up your category to a keyboard binding.

Tool Plug-in Tutorial 22/22

	1 Introduction
	2 Create a New Plug-in
	3 Manifest
	4 Import Icons and Pointers
	5 Extensions
	6 Tool Definition
	7 Tool Implementation
	8 Testing the Plugin
	9 Question and Answer
	10 What to do Next

