
uDig Requirements Document

June 17, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Jody Garnett
 Richard Gould
 Jesse Eichar
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7 Canada
 E-mail: jgarnett@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

1 INTRODUCTION ...5

2 PROJECT OVERVIEW..6

3 PROJECT REQUIREMENTS ..7
3.1.1 Functional Requirements...7
3.1.2 Non-Functional Requirements ...8

4 TERMINOLOGY AND DEFINITIONS..9
4.1.1 Eclipse Framework Terminology................................9

4.2 TERMINOLOGY...10
4.3 COMMON ACRONYMS................................10
4.4 MISCELLANEOUS TERMS ..11

5 UDIG MODEL AND ARCHITECTURAL OVERVIEW..12
5.1 SYSTEM DATA MODELS..13

5.1.1 User Models:..13
5.1.2 Architectural Models:................................13

5.2 SYSTEM MODULE OVERVIEW ...14
5.3 USER INTERFACE ...16

5.3.1 Components..18
5.4 CORE................................19

5.4.1 Components: ..20
5.5 DATA DISCOVERY AND ACCESS ..21

5.5.1 Components..22
5.6 RENDERING ...23

5.6.1 Components..24
5.7 PRINTING...25

5.7.1 Components..26
5.8 UDIG EXTENSION FRAMEWORK...27

6 APPLICATION REQUIREMENTS..28

7 UI MODULE REQUIREMENTS..29
7.1 LAYERS (MAP VIEW)..30
7.2 VIEWPORT (MAP EDITOR)...31
7.3 EDIT TOOLBAR (VIEWPORT TOOLBAR)..32
7.4 SELECTION TOOLBAR (VIEWPORT TOOLBAR)...32
7.5 SELECTION VIEW (DEPENDS ON VIEWPORT VIEW) ...33
7.6 FEATURE VIEW (DEPENDS ON VIEWPORT VIEW)..34
7.7 QUERY WIZARD................................35
7.8 PRINTING WIZARD ...35
7.9 STYLE WIZARD/EDITOR..36
7.10 CATALOG VIEW................................37

8 CORE MODULE REQUIREMENTS..38

- 3 -

8.1 LAYER MANAGER ..39
8.2 CONTEXT MODEL...40
8.3 SELECTION MANAGER..41
8.4 SELECTION MODEL ..42
8.5 STYLE MANAGER ...43

9 DATA DISCOVERY AND ACCESS MODULE REQUIREMENTS.............................44
9.1 LOCAL CATALOG ...45
9.2 WEB FEATURE CLIENT ...46
9.3 WEB MAP CLIENT..47
9.4 DATABASE ACCESS ..48
9.5 RASTER FILE FORMATS ..49
9.6 SHAPEFILE FORMAT ...50

10 RENDERING MODULE REQUIREMENTS..51
10.1 RENDERING MANAGER...52
10.2 VIEWPORT MODEL ...53
10.3 RENDERER................................54
10.4 RENDERSTACK ..55
10.5 FEATURERENDERER...56
10.6 WMCRENDERER..57
10.7 GRIDCOVERAGERENDERER ..58

11 PRINTING MODULE REQUIREMENTS..59
11.1 LAYOUT ..60
11.2 PAGE................................61
11.3 PRINTING CONTEXT MODEL..62
11.4 PRINTING ENGINE ..63

12 UDIG EXTENSION MODULE REQUIREMENTS ..64

- 4 -

TABLE OF FIGURES

Figure 1: General Architectural Overview.. 14
Figure 2: uDig UI Mockup... 16

Figure 3: Core Module Interface API ... 19
Figure 4: Data Discovery and Access Module Interfaces 21

Figure 5: Rendering Module Interfaces... 23
Figure 6: Printing Module Interfaces... 25

Figure 7: Layer View Component.. 30
Figure 8: Viewport Component .. 31

Figure 9: Selection View Component .. 33
Figure 10: Feature View Component... 34

Figure 11: Style Editor Component .. 36
Figure 12: Catalog View Component... 37

Figure 13: Model Interaction.. 38

Figure 14: Catalog Interaction Diagram.. 44

Figure 15: Rendering Interaction Diagram .. 51
Figure 16: Printing Interaction Diagram.. 59

Figure 17: Extension Interaction Diagram... 64

- 5 -

1 INTRODUCTION

This document outlines the requirements for the User Friendly Desktop Internet
GIS (uDig). The purpose of this document is to act as a guide for uDig developers.
This document is not a design document. Its focus is on identifying the
requirements of each module so that they will satisfy the overall project
requirements when integrated.

This document is organized as follows:

• Section 2, Project Overview: provides an overview of the uDig project itself.

• Section 3, Project Requirements: discusses the requirements of the
complete project.

• Section 4, Terminology and Definitions: a terminology and acronyms
reference. Within the terminology section a brief explanation of the
terminology conflicts between GIS terminology and Eclipse platform
terminology is provided. (Remember: Eclipse is one of the key technologies
being used to develop uDig.)

• Section 5, uDig Model and Architectural Overview: is a high-level look at
the architecture of the project. This section is intended to provide some
context for the reader for the later sections.

• Sections 6-12, Application Requirements: alist of the requirements of the
different modules and sub-modules of the project.

The last sections will be used as a reference for the uDig developers in order to
ensure that all the requirements of the individual modules are met, and in
satisfying the module requirements the project requirements will be met.

There are two types of requirements that are examined in this document:

• Functional Requirements, which constrain and describe the feature set of a
module

• Non-Functional Requirements, which capture acceptance testing
considerations, such as performance and usability

- 6 -

2 PROJECT OVERVIEW

The User Friendly Desktop Internet GIS for OpenGIS Spatial Data Infrastructures
project (uDig) will create an open source desktop GIS application, to make
viewing, editing, and printing data from Open Web Services (OWS) and local data
sources simple for ordinary computer users.

Open source components are a critical part of the uDig vision, because they
allow organizations to deploy infrastructure widely, in a distributed fashion,
without incurring multiple licensing fees. Open source components are also the
most tractable for fast support of new OpenGIS interoperability standards.

Spatial
Database

File Based
GIS Data Mapserver

WMS

GeoServer
WFS-T
WMS

R/W

R

R/W

R

R/W

R

Desktop
Internet

GIS

• WFS Client
• WMS Client
• Editing Tools
• Printing
• Local Data
• Cross Platform

Inte ractive desktop access is the missing application in
OpenGIS standards-based spatial infrastructures

There are already many different pieces of open source software that implement
OpenGIS server standards: Mapserver implements WMS, GeoServer implements
WMS and WFS-T, PostGIS implements SFSQL, DeeGree implements WMS and
WFS, and so on. However, there is not a single piece of desktop software capable
of binding information from all these servers together into a unified desktop view.

uDig is the open source application which will bring OWS data sources to the
desktop, and integrate them with local data sources for standard business
processes – data viewing, data editing, and data printing.

- 7 -

3 PROJECT REQUIREMENTS

3.1.1 Functional Requirements

The uDig application will have the following capabilities:

• WFS client read/write support, to allow direct editing of data exposed via
transactional Web Feature Servers (WFS-T).

• WMS support, to allow viewing of background data published via WMS.

• Styled Layer Descriptor (SLD) support, to allow the client-directed dynamic
re-styling of WMS layers.

• Web Registry Server support, for quick location of available GIS information.

• Printing support, to allow users to create standard and large format
cartography from their desktops using GIS data sources.

• Standard GIS file format support, to allow users to directly open, overlay,
and edit local Shape and GeoTIFF files with online data.

• Coordinate projection support, to transparently integrate remote layers in
the client application where necessary.

• Database access support, to allow users to directly open, overlay and edit
data stored in PostGIS, OracleSpatial, ArcSDE, and MySQL.

• Cross-platform support, using Java as an implementation language, and
providing one-click setup files for Windows, OS/X and Linux.

• Multi-lingual design, allowing easy internationalization of the interface, with
French and English translations of the interface completed initially.

• Customizability and modularity, to allow third party developers to add new
capabilities, or strip out existing capabilities as necessary when integrating
the application with existing enterprise infrastructures.

- 8 -

3.1.2 Non-Functional Requirements

The following constraints are emphasized:

• Well-Rounded Framework, built on standard and best-of-breed libraries to
offer a sustainable, competitive advantage to uDig developers.

• Plug-in Deployment Model, with versioning and plug-in management to
ease the cost of deployment, upgrading and installation.

• Integration/Extension, maintain common appearance, workflow,
framework and persistence mechanisms between built-in editing and third-
party modules.

• Logs, make use of logging standards and libraries.

• Open Development Process, capture developer interest and third party
contributions.

• Marketing

• Release Management, stable and development releases.

• Product Development and Branding, continued use of JUMP branding.

• Licensing Model and Business Model

• Application License Model, open-source license to allow distribution and
extension without incurring multiple licensing fees, commercial support
allows for a business model.

• Extension License Model, open-source Framework API allows GPL or
Commercial extension.

• Usability, use industry standard user-interface constructs and terminology to
reduce training time.

• Configuration and Preferences, make use of sensible defaults, use
context where possible.

• Installation, allow installation with sensible defaults and little user input.

• Professional Appearance, integrate with existing installation base.

• Quick Response, provide immediate feedback.

• Performance

• Data Access Performance, ESRI Shapefile access is a significant measure
of application performance and must be more than competitive.

• Operative Performance, application must be sufficiently responsive so
that an operator can maintain concentration.

• Security, considered where applicable: database passwords will not be stored
with project file; the OWS infrastructure lacks a strong security model.

- 9 -

4 TERMINOLOGY AND DEFINITIONS

This document defines and refers to the following user-interface constructs:

Project Consists of Maps and Pages

Map Project entry defining content the user is interested in.

Viewport Area of Interest (AOI) and projection (CRS) used to render a Map

Page Project entry defining content and layout used to print a page

Catalog List of Data Sources known to local user

Data Source Catalog entry that defines data connection information for remote
servers, local files or temporary results.

4.1.1 Eclipse Framework Terminology

The Eclipse Framework provides a series of high-level concepts that we will
leverage to provide a consistent look and feel to the uDig application. We may
choose to extend these assumptions as the needs of our project dictate.

The Eclipse framework makes use of several metaphors:

Workbench A single application window is assumed

View A panel in the application window. There are a number of
predefined areas in the Application window where a view may be
located.

Editor A special view associated with a resource. A resource is
anything that holds state

Perspective A grouping of views assembled for a specific purpose

Main Menu Menu associated with the main application window

Main Toolbar Toolbar associated with the main application window

View Menu Available as a black triangle in the title bar of the view

View Toolbar Additional icons that are available in the view title bar

At a low level, the Eclipse Framework makes use of JFace and SWT to provide:

Viewer A consistent form of View creation

Actions Define shared behaviors between menus, toolbars and buttons

Registries Which hold images and fonts

Dialogs Which provide simple interactions with the user

Wizards Which provide complex interactions with the user

- 10 -

4.2 Terminology
In specifying requirements, particularly non-functional requirements, we have
used the following Terminology.

Throughput Number of bits/features/transactions per unit of time

Performance Time per bit/feature/transaction (inverse of throughput)

Latency Wait time for a response

Capacity Number of entities the system can support in a given
configuration at a fixed level of performance

Scalability Ability to increase capacity by adding hardware

Reliability Length of time the system can run without failing

Response Time Total perceived time it takes to process a request

Many modules will have several performance requirements that will need to be
balanced.

4.3 Common Acronyms
The following acronyms are used in describing subsystem requirements.

API Application Programmer Interface

GML Geography Markup Language

MVC Model-View-Controller

OGC Open GIS Consortium

OWS Open Web Service specification

SLD Style Layer Descriptors

SMS Style Management Service

WMS Web Map Server

WMC Web Map Client

WRS Web Registry Service

WFS Web Feature Server

WFC Web Feature Client

- 11 -

4.4 Miscellaneous Terms

Area of Interest The area of a feature set that is being focused on at a given
time. For example, if the data set is the set of roads and rivers
in BC but a viewport is viewing Vancouver Island then the
Area of Interest would be a box around Vancouver Island.

Decorator A symbol on a map for display, not data, purposes. A North
arrow is an example of a decorator.

Layer Reference Typically is used to mean a reference to a Catalog entry.
However in the context where Layer Reference is used the
Catalog entry reference represents a Layer in a map.

Plug-in Used synonymously with extension. A plug-in is a portable
collection of code that can be “plugged” into uDig to provide
additional functionality.

RenderedImage A Java interface. One of the main image interfaces.

- 12 -

5 UDIG MODEL AND ARCHITECTURAL OVERVIEW

This section is intended to provide a high-level overview of the uDig core
architecture in order to allow readers who are less acquainted with uDig’s design
to be able to follow the module requirements sections. There are no justifications
for the architecture; that is not the intent of this section.

The architecture of uDig is intended to consist of a number of well-defined
modules that cooperate to satisfy the project requirements. The core and most
important parts of the system are the model abstractions, see Section 5.1. It is
important to note the difference between the “User” models and the
“Architectural” models.

This section is divided into several sections; most sections simply introduce a
module and the module’s primary components.

- 13 -

5.1 System Data Models
An important aspect to be aware of during this section is the relationship
between the data models as the user views them and how the models are
repr esented programmatically. For example, at an operational level there is a
Context Model, which is a Data Model, combined with some of the state
information, such as layer visibility, from a Map.

5.1.1 User Models:

• Project, the highest level of abstraction. A Project contains a user’s work
for a particular job. A Project consists of maps and pages.

• Map, similar to an ArcView “view”. A Map encapsulates a view of the
Project data and how the data should be displayed on a screen for viewing
and editing. A map usually has Viewports defined for visualizing the data
set.

• Viewport, an area of the data that is displayed in a display window.

• Page, project entry defining content and layout used to print a page. A
Page is closely related to a Map except a Map models how the data is
displayed on the screen for editing and viewing and a Page is used to print
maps.

• Catalog, list of Data Sources known to local user

5.1.2 Architectural Models:

• Context Model, the primary realization of a map. When a Map is opened
a Context Model is instantiated. If many maps are open then there will be
many Context Models. A Context Model contains the layer information of
the map but not the information about the decorators and the viewport
data.

• Viewport Model, encapsulates the Area of Interest and CRS of the data to
be displayed as well as how and what decorators are displayed. The
Viewport Model is derived from the Map.

• SelectionModel, encapsulates queries and references that permit
identification of all the selected features.

• PrintContext, encapsulates all the data required to print a map. The
PrintContext is instantiated from the data in Page

• Catalog, the same artifact as the Catalog discussed in Section 5.1.1, User
Models.

- 14 -

5.2 System Module Overview
This section presents the different modules in the uDig system and discusses the
role of each module. Many of the modules will leverage existing technology in
order to satisfy their requirements.

User

Core Page

Extention

Issues

Map

Data Access
& Discovery

Printing Engine

Printer

Geotools

GridCoverageExchangeDataStore WebMapClient WebFeatureClient

Local Catalog

Rendering
Viewport

ModelRenderStack

Figure 1: General Architectural Overview

The diagram above illustrates the basic modules of the uDig system. The User
Interface, Core and Data Discovery and Access modules are the most critical
modules in the system.

Data Discovery and Access is responsible for fetching and compiling service
metadata and connection information into a catalog; this is performed by the
Catalog. The Data Access creates objects for reading and writing to the services.
Examples of a service may be a local file or a remote server. Section 5.5
discusses Data Access in more detail.

The User Interface module is a separate module because it provides a workflow
for the user and is crucial to the use of the application.

At the User Interface level concepts like Project, Map and Page are of primary
concern. The user interface is based on the existing Eclipse platform so the look
of all the views (see Section 5.8, uDig Extension Framework) will be consistent
even if a third party developer creates an interface in an extension (see Section
5.8, uDig Extension Framework). Section 5.3 discusses the User interface in
more detail.

The Core module contains the classes that Extensions, Rendering and User
interfaces operate through. The Context Model, the Layer Manager (which is the
controller for Context Model) and the Selection Model and Manager all are parts of
the Core module. See Section 5.4 for more on the Core module.

The Printing and Rendering modules are essentially plug-ins that are packaged
with uDig and are required to satisfy the uDig project requirements.

- 15 -

The Rendering module’s user interface component is the Viewport and its
primary responsibility is rendering user defined maps. Its second crucial
responsibility is to provide visual editing and selection interaction. See Section
5.6.

The Printing module has functionality for printing maps. Section 5.7 discusses
the components of printing, such as the Page.

Section 5.8 discusses the goals and intent of the Extension Framework which is
intended to allow third party developers to extend the functionality of uDig in a
simple and effective manner.

- 16 -

5.3 User Interface
The uDig user interface uses the Eclipse framework to provide a consistent and
pleasant user interface. Eclipse allows the user to move panels into different
docking areas and allows panels to be resized to provide a flexible user interface
that can be fully defined by the user; Figure 2 shows one likely configuration.

Figure 2: uDig UI Mockup

The image above is based on a “screenshot” of Eclipse, the framework used by
uDig. The top-left panel is the project navigator. In this example there are two
projects the user can operate on. Each project has entries that belong to them;
the entries can be either Maps or Pages.

Below the Navigator is the Layers view. See Figure 7 for a close-up view of the
Layers view. The Layers view lists the layers in a particular map. The “main”
panel, the Viewport, is showing the Hillshade Map. The Layers view is linked to
the Viewport so the Layers view panel shows the layers of the Hillshade Map.
Each layer has symbols associated that indicate the state of the layer, ie visible
or editable (the final application will have different and more logical symbolism).
The “main” panel is the Viewport, which can be used to edit the GIS data. There
can be multiple viewports open; notice the Roads tab above the Viewport. At the

- 17 -

bottom of the screenshot is a Properties panel. This is not a defined uDig panel
but could be an example of a plug-in’s user interface.

- 18 -

5.3.1 Components

This section lists the User Interface components required by the uDig project.
See Section 7 for the User Interface Requirements:

• Layer View, The Layer View of the Map is a list of the layers displayed in rows
similar to most GIS software.

• Viewport, The Viewport provides a visualization of the current Map.

• Edit Toolbar, Allows editing of a Feature selected by the Viewport.

• Selection Toolbar, A toolbar containing tools that can be used to
interactively select features in the Viewport.

• Selection View, Permits viewing and editing feature selections.

• Feature View, Provides Display and Editing of the currently indicated
Feature. Any actions requiring spatial input (like geometry editing) have been
gathered into the Edit Toolbar.

• Query Wizard, Allows the definition of selection information as a series of
constraints.

• Printing Wizard, The printing wizard component is a set of questions, like all
wizards, that allows the user to create a Page (see Section 5.1.1).

• Style Wizard/Editor, Styles can be created and customized using the style
wizard and the style editor.

• Catalog View, The Catalog View is a user interface that provides access to the
Local Catalog. The Catalog View allows the user to define and modify the
Data Sources known locally as well as provide functionality for adding the
Data Sources to Projects.

- 19 -

5.4 Core
The Core module is central to the operation of uDig and contains the classes that
Extensions, Rendering and User interfaces operate through. The Context Model,
the Layer Manager (which is the controller for Context Model) and the Selection
Model and Manager all are parts of the Core module.

Figure 3: Core Module Interface API

This figure shows the components of the Core module as well as the
relationships between the core components. The next subsection discusses the
different components’ purposes.

- 20 -

5.4.1 Components:

• ContextModel, the primary realization of a Map (see Section 5.1.1).
Context Model sends events to its Listeners when its internal state
changes.

• LayerRef, represents a layer in the Map. In essence a LayerRef is a
reference to an entry in the Local Catalog.

• LayerManager, is perhaps the most central component of the entire
system.

o Controls the ContextModel

o Creates Layer objects that realize the LayerRefs in the
ContextModel.

o By controlling access to the Layer objects, LayerManager also
controls access to the actual data.

• Layer, has knowledge of what the layer data is and how the data is stored
and can be accessed. Layers are created and managed by the
LayerManager and used by other components to obtain data access
objects such as Data Stores and Data Sources.

• ContextStateEvent, encapsulates context state changes. When the
Context Model changes ContextStateEvents are sent to all of the model’s
Listeners.

• SelectionModel, encapsulates queries and references that permits
identification of all the selected features.

• Selection Manager, the controller for the SelectionModel. Restricts write
access to the SelectionModel.

- 21 -

5.5 Data Discovery and Access
Data Discovery and Access is responsible for fetching and compiling service
metadata and connection information into a catalog; LocalCatalog performs this.
The Data Access creates objects for reading and writing to the services.
Examples of a service may be a local file or a remote server.

Data Discovery and Access is complicated in a distributed environment. The
existing data discovery specifications are based on the OGC Catalog
Specification. The Web Registry Service is an example of the OGC Catalog Service
implemented as an Open Web Service specification (OWS).

In order to capitalize on these developments we will need a strong object model
following the OGC conventions.

Figure 4: Data Discovery and Access Module Interfaces

Figure 4 shows the components and relationships of the Data Discovery and
Access Module. Subsection 5.5.1 discusses the components of the Data
Discovery and Access Module.

- 22 -

5.5.1 Components

• Catalog, consists of entries with service metadata and the connection
information for the associated service.

• CatalogEntry, associates Metadata with service connection information.
For example, if a WMS was the service referenced by an entry, the entry
would also have the name of the WMS and, if available, a reference to a
WFS where the features being rendered could be obtained. The entry may
also list the styles and features rendered by the WMS.

• MetaDataEntity, A metadata of a service. There may be many pieces and
types of metadata for each service.

• DataStore, one of the three major access components. Provides
Read/Write access to Feature data. The DataSource has the same level of
abstraction but only allows read access to Feature data.

• DataSource, provides read access to Feature data. DataSource is not
shown in Figure 4 but it has the same relationships as DataStore.

• GridCoverageExchange, provides access to grid coverages. Additionally,
GridCoverageExchange has functionality for exchanging between
persistent grid coverage formats. GridCoverageExchanges are used to
communicate with WMS services because WMS requests are satisfied with
raster images, which are a form of grid coverage.

- 23 -

5.6 Rendering
The Rendering module uses the uDig Extension Framework. The Rendering
module’s user interface component is the Viewport and its primary responsibility
is rendering user defined maps. The second crucial responsibility is to provide
visual editing and selection interaction.

Figure 5: Rendering Module Interfaces

Figure 5 shows the major non-UI components of the Rendering module.
Additionally, there are important subclasses to the Renderer class that are not
shown in the diagram but are discussed in the following section.

The Rendering Technologies Report contains additional information about
printing and uDig.

- 24 -

5.6.1 Components

• RenderManager, the “brains” of the rendering module. Responsibilities of
the RenderManager include acting as the control for the ViewportModel
and creator of Renderer instances for each map, decorator and interaction
layers. The RenderManager also acts on ContextStateEvents when the
event requires changes in the rendering module.

• ViewportModel, encapsulates the viewport state. This includes the map’s
area of interest, the local CRS and the decorators that displayed are in the
viewport.

• RenderStack, acts as a container for the list of Renderers. In addition,
the RenderStack builds Java Advanced Imaging (JAI) chains that combine
the output from the Renderers for display on the screen.

• Renderer, creates visual output. Some Renderers render feature and
raster GIS data but other types may render dynamic information based on
computations. For example, a Scalebar Renderer would output visual data
but the image would be based on dynamic computational input, not stored
information. Renderers render data to a Graphics2D (a Java object),
specified by one of its peers, or to an internal image that can be obtained
upon request.

• FeatureRenderer, a subclass of Renderer that renders features from a
FeatureSource.

• WMCRenderer, subclass of Renderer that renders images obtained from
WMSs. A WMCRenderer has the knowledge to create and send WMS
requests.

• RasterRenderer, subclass of Renderer that renders Raster images.

• RenderEvent, occurs when the state of a Renderer occurs. For example,
a RenderEvent is raised when a Renderer has data ready for display.

• Style, a definition of how data should be rendered. A style is a set of
filters and a set of associated symbolizers. Filters are used to identify a
set of data and symbolizers define how to represent the set.

- 25 -

5.7 Printing
Similar to the Rendering module, the Printing module is an extension that is
critical for satisfying the uDig project requirements. The Printing module has the
functionality required for printing user-defined maps.

The crucial difference between Rendering and Printing is that we cannot use
RenderImage and JAI to combine the output of Renderers. Instead, the
Graphics2D provided by the Java2D Printing API must be used.

The size and resolution of the Java2D Printing Graphics2D provides an
interesting challenge for some of the renderers. In particular, WMCRenderer
needs to issue several GETMAP requests and tile together the result at the
resolution of the Printer.

Figure 6: Printing Module Interfaces

The Print Module is a conceptually simple module. A Page represents a page to
be printed. PrintContext is the model. A Layout dictates how the model is
organized on a page and a PrintEngine prints using renderers from the
Rendering module.

The Printing Technologies Report contains additional information about printing
and uDig.

- 26 -

5.7.1 Components

• Page, represents a page to be printed. A Page consists of a Layout and a
PrintContext.

• PrintContext, is the data model. The PrintContext combines the model
information from ContextModel(Section 5.4), the SelectionModel (Section
5.4) and the ViewportModel (Section 5.6). The layer references, map
decorators, area of interest, CRS and current selection are all included in
the PrintContext.

• Layout, defines how a PrintContext will be displayed on a page.

• PrintEngine, contains the functionality for printing a page.

- 27 -

5.8 uDig Extension Framework
The ability to extend the uDig project is one of its central measures of success. A
strong extension Framework is a key provision facilitating an open source
community. By providing an extension framework, the initial outlay to join the
community is reduced, and the administrative overhead associated with
contribution is reduced.

A plug-in (extension) is developed by accessing and operating with the
components exposed to the plug-in developers. The components are referred to
sometimes as hooks and sometimes as extension points. The primary extension
points available to developers are the following:

• LayerManager

• ContextModel

• SelectionManager

• SelectionModel

• RenderManager

• Renderer

• StyleManager

• Style

To aid the development of Third Party Plug-Ins, a uDig Extension Framework will
be provided, allowing the development of Plug-Ins through sub classing. For
example, a plug-in developer could extend a data operation class that would
contain the functionality for obtaining data and the plug-in developer would only
have to provide the operation functionality.

- 28 -

6 APPLICATION REQUIREMENTS

When considering the capabilities of the uDig Application we have drawn from a
number of sources:

• The Project Requirements

• The operation of popular GIS desktop applications.

• A series of Use-Cases capturing intended workflow

Each of the following sections lists the requirements for the components in a
particular module. Section 7 lists the requirements for the UI Module, for
example.

The non-functional requirements, followed by the functional requirements are
listed for each component. The non-functional requirements are listed first
because often they are simpler and therefore more comprehensible to non-
developers.

This section is intended as a guide for the uDig developers to ensure that all the
uDig requirements are met. Non-developers may have a difficult time
understanding this section.

- 29 -

7 UI MODULE REQUIREMENTS

The UI module encompasses all of the application that the users sees and
interacts with. The following sections list the requirements of the UI components
and have a visual example each. Many of the descriptions mention relationships
with ArcView because it is one of the best-known GIS clients.

Section 5.3 provided a high-level discussion of the UI Module that explains how it
fits with the rest of the system.

- 30 -

7.1 Layers (Map View)
The Layer View of the Map is a list of the layers displayed in rows much like
ArcView’s Table of Contents, sometimes referred to as the Legend View. Each
row in the Layer View contains icons and other decorators to provide visual clues
about the state of the layer. Each row (layer) can be interacted with by modifying
the layer’s configuration. For example, a right click might open a menu for
advanced options and dragging the layer might change the order of the layers.

Roads (wfs)

Streams (wfs)

Layers

(layer) (transaction)

Bug Sites (shp)

Arch Sites (shp)

Restricted Area (shp)

Elevation (arcgrid)

Figure 7: Layer View Component

Figure 7 provides an example of what a Layer View component might look like.
It would be one of a number of UI components displayed. Figure 2 showed an
example of a complete user interface.

Non-Functional Requirements:

• Industry Standard, appearance and behavior is similar to other popular GIS
clients;

• Legend Glyph, accurately displays the glyphs associated with each layer.
Based on the SLD where possible.

Functional Requirements:

• Display Layers, communicate layers status with respect to visibility,
editability, and availability. Any errors, conditions or issues associated with
the layer must also be indicated;

• Toggle Visibility, allows a user to set which layers are visible;

• Toggle Editability, allows a user to set which layers can be edited;

• Reorder Layers, permits the user to change the order in which the layers are
displayed;

• Add/Remove Layers, provides access to a wizard for adding layers and
permits the user to delete layers

- 31 -

7.2 Viewport (Map Editor)
The Viewport provides a visualization of the current Map. If more than one
Viewport is used, each may have a particular Area of Interest (AOI) and
projection (Coordinate Reference System).

The Viewport closely interacts with many parts of the user experience; this
interaction is governed by a series of actions provided by other subsystems. This
is the major focus of many third-party extensions and the plug-in framework
provided must be well thought out.

Spearfish

(viewport) (edit)(selection)

Figure 8: Viewport Component

Figure 8 is an example of a Viewport. A viewport being used during operation
would likely be much larger. However, this example shows that a viewport
displays GIS data. In addition, the viewport is an interface for feature and map
editing. NOTE: In the context of the last statement, “map” is intended to mean
the representation of the GIS data; not the Map data model.

Non-Functional Requirements:

• Standard Workflow, appearance and behavior is similar to other GIS clients.

• Editing Performance, immediate editing feedback for handle manipulation.

• Selection Performance, immediate feedback of selection changes and
visualization.

Functional Requirements:

• Visualization, displays the map specified by the Viewport.

• Zoom, allows the user to choose the scale of the map.

• Pan, allows the user to interactively move the area displayed.

• Selection, integrates with Selection Toolbar, allowing the user to select
feature information and display the current selection.

• Transaction, allows the user to control the current transaction.

• Feature Edit, integration with the Edit Toolbar and Feature View to allow
modification of a Feature indicated by a series of handles for each vertex.

• Tooltips, shows a short summary when the mouse pointer pauses over a
feature.

• Context Menus, context sensitive pop-up menus determined by Viewport,
Layers and current Feature.

- 32 -

7.3 Edit Toolbar (Viewport Toolbar)
Allows editing of a Feature selected in the Viewport. The Feature may have more
than one Geometry component.

Functional Requirements:

• Vertex Selection, selects a feature's vertex.

• Move Tool, moves the selected vertex.

• Draw Rectangle, draws a rectangle feature.

• Draw Line, draws a line feature.

• Draw Point, draws a point feature.

• Draw Polygon, draws a Polygon feature.

• Insert Vertex, inserts a vertex in a line string.

• Join Features, joins two features into one.

• Delete Feature, deletes a feature.

• Snapping, enable/disable inter-layer snapping for editing.

7.4 Selection Toolbar (Viewport Toolbar)
The Selection Toolbar contains tools that can be used to interactively select
features in the Viewport.

Functional Requirements:

• Rubber Band, the rubber band tool selects features within the rectangular
area indicated by a click and drag “stretching box”.

• Select Feature, a single feature can be selected by clicking on a feature.

• Multiple Selections, features can be added to or removed from a Selection by
holding shift or control and clicking on features.

• Magic Polygon, the “magic polygon” is a polygon created by clicking in the
viewport. All features that are fully or partly within the polygon are
selected.

- 33 -

7.5 Selection View (Depends on Viewport View)
Permits viewing and editing of feature selections. Any actions requiring spatial
input have been gathered into the Selection Toolbar of the current Viewport.

Selection

Query Filters

archsites.439383 Hanson Ranch

Figure 9: Selection View Component

In the example above the selected features list is displayed, there is only one
selected feature. The Query menu (not shown) allows the user to view the
selection queries and filters.

Non-Functional Requirements:

• Extension Point, common extension point for plug-ins operating against the
current selection.

Functional Requirements:

• Tabular Summary, provides a tabular summary of the current selection.

• Query, access to the Query Wizard to define selection via constraints.

- 34 -

7.6 Feature View (Depends on Viewport View)
Provides display and editing of the currently indicated Feature. Any actions
requiring spatial input (like geometry editing) have been gathered into the Edit
Toolbar.

Feature

Hanson Ranch

archsites.439383

Cat Desc:

ID:

772300Count:

Catagory: UNKNOWN

Location: Point

Figure 10: Feature View Component

As Figure 10 shows, a Feature View Editor has editable fields (white) and non-
editable fields. The editor can be used to directly edit or examine the feature
attributes.

Functional Requirements:

• Attribute Editing, displays and allows modification of attribute information

• Geometry Indication, indicate the current geometry attribute to be edited by
the Edit Toolbar

- 35 -

7.7 Query Wizard
Allows the definition of selection information as a series of constraints.

Non-Functional Requirements:

• Prototype Queries, made by selecting a feature and selecting attributes to
match or not match. (See mail filter creation on mail clients such as
Thunderbird.)

• SQL-style Queries, defined in a language similar to SQL.

Functional Requirements:

• Add/Remove Selections, selection queries can add or remove a group of
features to/from the currently selected feature set.

• History, a history of past selection queries is maintained for future use.

7.8 Printing Wizard
The printing wizard component is a set of questions, like all wizards, that allows
the user to create a Page (see Section 5.1.1). Normally the user will be able to
simply accept the defaults and print or save the Page created.

Non-Functional Requirements:

• Template, provides a set of Layout Templates.

• Sensible Defaults, sensible defaults should be determined based on current
settings and previous runs of the printing wizard.

Functional Requirements:

• Printer, printer selection.

• Layout, Layout selection.

• Layout Editing, Layout editing support.

• Print Preview, user may view the preview.

• Save, allow user to save the print setup.

• Print, starts the print process.

- 36 -

7.9 Style Wizard/Editor
Styles can be created and customized using the Style Wizard and the Style
Editor.

Line

Label: Arial 8 B i u

Fill:

New Delete

Style

Name: Stream

Figure 11: Style Editor Component

The Style Editor is one of the two ways styles can be modified in uDig. Figure 11
shows an example of the style editor being used to edit a line style.

Functional Requirements:

• Wizard Style Creation, create a new style using a style wizard. Wizard
allows user to choose a base style from a pool of “basic” styles and then
modify the style.

• Style Editing, a style's attributes can be edited after creation.

• SLD Styling supported, SLD styles can be created and edited.

- 37 -

7.10 Catalog View
The Catalog View is a user interface that provides access to the Local Catalog.
The Catalog View allows the user to define and modify the Data Sources known
locally, as well as providing functionality for adding the Data Sources to Projects.

GeoServer (WFS/WMS)

Catalog

GISFolder (Filesystem)

road (Type/Layer)

stream (Type/Layer)

bugsites.shp

(data) (discovery)

archsites.shp

spearfish.dem

Figure 12: Catalog View Component

The example shown in Figure 12 lists a server with defined (layers, road and
stream) and a filesystem (local or remote) is also listed as part of the Local
Catalog. The Layers can be added to a Project. New servers and folders may be
added to the Catalog. The Catalog (not the user interface component) is
persistent and can be exported and transferred to other systems.

Non-Functional Requirements:

• Tree View, displays repositories as a list, and services as branches of a
repository.

• Drag and Drop, integrate with Viewport to allow quick visualization of data.

Functional Requirements:

• Add Data Wizard, a wizard for adding a new Data Repository.

• Remove Data Repository, remove a Repository from the Data Manager.

• Refresh Data Repository, refresh the service entries of a Repository.

• List Repositories, lists the repositories and ping rate of the Repositories.

• List Services, provide a list of services for each Repository.

- 38 -

8 CORE MODULE REQUIREMENTS

The Core module is central to the operation of uDig and contains the classes that
Extensions, Rendering and User interfaces operate through. The Context Model,
the Layer Manager (which is the controller for Context Model) and the Selection
Model and Manager all are parts of the Core module.

Layer Manager

Layer: ROAD WMCGridReader

Layer: STREAM WMCGridReader

Layer: bugsites.shp

Layer: spearfish.dem GridReader

Transaction

Layer: archsites.shp

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

Feature

Local Catalog

GISFolder:
Directory

GeoServer:
WFS/WMS

ShapefileDataStore

ArcGridGCE

WFCDataStore

WebMapClient

Map

Context Model

Viewport Model

LayerDefinition: Roads

LayerDefinition: Streams

LayerDefinition: Bug Sites

LayerDefinition: Restricted Area

LayerDefinition: Elevation

Extent Projection

Style Manager

StyleDefinition: archStyle

StyleDefinition: restrictedSymbol

StyleDefinition: demStyle

StyleDefinition: roadStyle

StyleDefinition: streamStyle

Spearfish (Map)

Impact1 (Page)

Tutorial (Project)

Projects

JamesBay (Project)

Roads (wfs)

Streams (wfs)

Layers

(layer) (transaction)

Bug Sites (shp)

Arch Sites (shp)

Restricted Area (shp)

Elevation (arcgrid)

Renderer Manager

Spearfish

(viewport) (edit)(selection)

In
te

ra
ct

GeoServer (WFS/WMS)

Catalog

GISFolder (Filesystem)

road (Type/Layer)

stream (Type/Layer)

bugsites.shp

(data) (discovery)

archsites.shp

spearfish.dem

Q
ue

ry
D

ra
w

Selection Manager

Define

Selection Model

Query

Selection

Query Filters

archsites.439383 Hanson Ranch

Filter

D
ef

in
e

Q
ue

ry

Query

Feature

Hanson Ranch

archsites.439383

Cat Desc:

ID:

772300Count:

Catagory: UNKNOWN

Location: Point

Interact

D
ef

in
e

Define

In
te

ra
ct

Line

Label: Arial 8 B i u

Fill:

New Delete

Style

Name: Stream style

In
te

ra
ct

Figure 13: Model Interaction

Section 5.4 provides a high-level discussion of the Core Module that explains
how it fits with the rest of the system.

- 39 -

8.1 Layer Manager
Layer Manager is responsible for governing all interactions with the ContextModel
of a Map. The Layer Manager controls transaction and editing services. As a
result most plug-in interaction with GIS information will occur via the Layer
Manager.

Non-Functional Requirements:

• Opaque Locking, hide Locking from the end user.

Functional Requirements:

• Controller, acts as Controller for ContextModel in the MVC sense.

• Layer Access, provides FeatureStore and GridCoverage access. Each Layer
represents the results of a LayerRef. A Layer may provide several avenues to
resolve the same GIS information.

• Locking, manages Feature locking.

• Transactions, manages Transactions for editing.

• Editing, maintains the Features currently being edited.

• Selection, maintains a Selection Manager to manage the current Selection.

- 40 -

8.2 Context Model
The ContextModel is used to manage the layer data inside the LayerManager. It
retains information about each layer to be displayed and other information
pertaining to all of the layers, such as SRS and Extent.

Non-Functional Requirements:

• Model, Layer Manager "controls" the ContextModel in a Model-View-Controller
sense.

Context will keep track of decorators, such as a legend, scale bar or compass.
This would allow it to be passed down to either the printer or the screen
renderer.

Functional Requirements:

• LayerDefinition, including both user GIS information and Decorators (like a
Legend, or Scalebar) arranged into a common Z order.

• Metadata, encapsulates Metadata such as abstract, title and author.

• Events, provide notification when modified.

• Persistence, can be saved to disk and transported to other workspaces.

- 41 -

8.3 Selection Manager
Maintains a SelectionModel for a Map, used in conjunction with the
LayerManager by the RendererManager to determine screen appearance
(Selection Rendering). Third Party Plug-Ins may also use Selection information as
a means of limiting operation scope.

Non-Functional Requirements

• Scalable, scalable selection solution for large datasets.

• Instant Feedback, sub-second notification of selection activity.

• Latency, selection should take less then 5 to 10 seconds for alpha.

Functional Requirements

• Map Selection, selection by map interaction.

• Table Selection, selection by table interaction.

• Query Selection, selection by "Query" user interface.

• Plug-in Access, programmatic access for operative plug-ins.

- 42 -

8.4 Selection Model
This is the model controlled by the Selection Manager. It captures selection
information as a series of Filters associated with each Layer.

Functional Requirements:

• Filters, associated with each Layer.

• Feature ID, used to capture individual selections.

• Extent, used to capture spatial selection on Map.

• Invert, inverts can be formed quickly with the use of "not (filter)".

• Integration, strong interactions are expected with the RenderStack both in
updating the appearance of the RenderStack via events, and in quickly
determining selection updates via Bounding Box queries against the Raster
images.

- 43 -

8.5 Style Manager
The Style Manager is used to manage all of the Styles within uDig. The Style
Editor (see Section 7.9) can edit many of the Styles. In order to keep track of
available Styles, the Style Manager needs to monitor the getCapabilities
responses from WMSs.

Non-Functional Requirements:

• WMS Style Editing, styles residing on WMSs are read only, but can be
copied to another location (to disk, then edited.)

Functional Requirements

• Styles Availability, aware of all styles currently available.

• Style Sources, aware of the origin of each style (on disk, WMS, etc.)

• Request, will return a style if it is requested.

• Style Updates, can receive new or changed styles.

• Style Editing, can create new styles and modify existing styles.

• Buffering, will retrieve new styles when it is informed of their location.

- 44 -

9 DATA DISCOVERY AND ACCESS MODULE REQUIREMENTS

Data Discovery and Access is responsible for fetching and compiling service
metadata and connection information into a catalog; LocalCatalog performs this.
The Data Access creates objects for reading and writing to the services.
Examples of a service may be a local file or a remote server.

Data Discovery and Access is complicated in a distributed environment. The
existing data discovery specifications are based on the OGC Catalog
Specification. The Web Registry Service is an example of the OGC Catalog Service
implemented as an Open Web Service specification (OWS).

In order to capitalize on these developments we will need a strong object model
following the OGC conventions.

Project Local Catalog

GISFolder:
Directory

GeoServer:
WFS/WMS

ShapefileDataStore

ArcGridGCE

WFCDataStore

WebMapClient

Layer Manager

Extention

Catalog

GISFolder Params

GeoServer Params

Postgis Params

Query

Define

Q
ue

ry

GeoServer (WFS/WMS)

Catalog

GISFolder (Filesystem)

road (Type/Layer)

stream (Type/Layer)

bugsites.shp

(data) (discovery)

archsites.shp

spearfish.dem

In
te

ra
ct

Figure 14: Catalog Interaction Diagram

The following requirements are for the Data Discovery and Access module in
general.

Non-Functional Requirements:

• Standard Naming, from OGC/ISO Specifications.

Functional Requirements:

• Metadata, catalog Metadata lookup functionality.

• Filter, consistent query construct.

The existing GeoAPI and Geotools development communities both have partial
implementations of our requirements.

- 45 -

9.1 Local Catalog
The Local Catalog serves as a central repository of data and server information.

Non-Functional Requirements:

• Ease of Data Location, intent is for the user to be separated from the data
source; so they need as little technical knowledge as possible.

• Security, name/password should be left out of the export/share.

Functional Requirements:

• Servers, store server connection information for sharing between projects.

• Data Directories, store data directories for sharing between projects.

• Metadata, provide access to metadata on Servers/Data Directories.

• Data Discovery, provide enough information for a user to define a new layer
in their context.

• Persist Settings, permit exporting and sharing DataStore connection
information.

• DataStores Management, lookup actualized DataStores that are in use.

• Missing Data, entries referred to by imported projects should be maintained,
allowing the user one location to correct data connection information.

Local Catalog has a strong interaction with the preferences maintained by the
local installation of uDig for the current user.

- 46 -

9.2 Web Feature Client
Web Feature Client is a cornerstone of the uDig application, allowing interaction
with Transactional Web Feature Serve rs as part of the OWS workflow.

Non-Functional Requirements:

• Latency, needs to be minimized, forcing us towards a streaming GML.

• Throughput, expected to be network bound.

• Scalability, address through bigger pipe, or by multithreading several
requests.

• Additional Formats, GeoServer currently supports “text/gml” and
“gzip/gml”; additional formats such as binXML should be discoverable at
runtime.

Functional Requirements:

• DataStore, use DataStore for WFS communication. The Geotools DataStore
API is a sufficient abstraction to capture operational use of a WFS client.

• Equivalency Metadata, allow for metadata describing alternate OWS
processing streams

• Catalog Services, catalog information needs to be accessible allowing for
integration with the Local Catalog.

Over the course of application development we may receive a new WFS
specification incorporating the additions for a subset of GML3.

- 47 -

9.3 Web Map Client
The uDig application requires access to WMS content. WMS is a mature concept
with four deployed standards and a common extension.

Non-Functional Requirements:

• Latency, cannot be safely constrained as part of a WMS; we need to make
use of continuous feedback.
(JUMP uses a rotating timer to indicate ongoing WMC activity)

• Throughput, important when making many small requests

• Scalability, the printing process must scale up to practical GIS printer
resolutions.

• Grid Coverage Exchange, WMS Client Services can be presented at the low-
level GCE API provided by GeoAPI according to the GO-1 draft specification.
Note this API is slaved to Catalog Services and supports limited data
discovery, and lacks an event model.

• Additional Formats, GeoServer currently supports “image/png”,
“image/jpeg” and “xml/svg”; additional formats should be discoverable at
runtime.

Functional Requirements:

• WMS1.0 – 1.1.1 Support, uses getCapabilities, getMap, FeatureInfo,
DescribeLayer methods to access WMS servers.

• WMS Post, allows for WMS requests to be sent over POST rather than GET,
providing more functionality.

• SLD Support, is used to define how WMS renders Layers. Should be capable
of offering a WMS as an alternative SLD, and browsing the SLDs available on
the WMS.

• SMS Browsing and Referencing, can refer Web Map Server to SLDs on SMS
Servers.

• Equivalency Metadata, allow for metadata describing alternate OWS
processing streams.

• Catalog Services, catalog information needs to be accessible, allowing for
integration with the Local Catalog.

• Rendering, WMS Client services should be presented behind the Rendering
API for ease of integration with the Rendering Stack. Such an interface can
provide a cache and asynchronous notification

Implementing GCE Exchange as a Geotools technological initiative provides WMS
Client code with extensive testing offline of the main uDig project.

- 48 -

9.4 Database Access
Database Access must be supported by uDig. Both raster images and Features
must be accessible from databases. These requirements primarily focus on
features because the requirements in the Raster File Format section (next
section) cover most of the requirements for Database image retrieval. All Rasters,
including images on Databases, are obtained using the GridCoverageExchange.

Non-Functional Requirements:

• Latency, minimal due to DataStore streaming Feature Reader model.

• Throughput, expected to be network bound.

Functional Requirements:

• DataStore, use DataStore for Database access. The Geotools DataStore API
is a sufficient abstraction to capture operational use of a GIS Database.

• Catalog Services, catalog information needs to be accessible, allowing for
integration with the Local Catalog.

• Equivalency Metadata, allow for metadata describing alternate OWS
processing streams.

• Reprojection, allow for metadata describing alternate OWS processing
streams.

- 49 -

9.5 Raster File Formats
Raster File Format support is provided by the GridCoverageExchange API. The
GridCoverageExchange API is a joint undertaking by Geotools and GeoAPI and is
included in the GO-1 initiative.

Non-Functional Requirements:

• Extensible, it should be simple to add new File format support.

• Latency, minimal due to the fact that files will be on disk or cached to disk.
Worst case will be in the situation that the file must be streamed from an
HTTP server for the initial load.

Functional Requirements:

• GeoTIFF, support for GeoTIFF 1.0 file format

• ArcGrid, support for ESRI’s ArcGrid file format

• ASCII Grid, support for the ASCII Grid file format

• Data Discovery, should be possible to look up GridCoverageExchange
implementations in a registry or catalog.

• Metadata, GridCoverageExchanges must have metadata associated with them
explaining which file formats they support. This metadata must be sufficient
to build a user interface allowing users to specify raster data.

- 50 -

9.6 Shapefile Format
Shapefile stores non-topological geometry and attribute information for spatial
features in a data set.

Non-Functional Requirements:

• Latency, minimal due to DataStore streaming Feature Reader model.

• Throughput, local shapefile access must provide immediate response.

Functional Requirements:

• DataStore, use DataStore for Shapefile access. The Geotools DataStore API is
a sufficient abstraction to capture operational use of a GIS Database.

• Data Discovery, catalog information needs to be accessible allowing for
integration with the Local Catalog.

• Equivalency Metadata, allow for metadata describing alternate OWS
processing streams.

- 51 -

10 RENDERING MODULE REQUIREMENTS

The Rendering module uses the uDig Extension Framework. The Rendering
module’s user interface component is the Viewport and its primary responsibility
is rendering user-defined maps. The second crucial responsibility is to provide
visual editing and selection interaction.

Local Catalog

GISFolder:
Directory

GeoServer:
WFS/WMS

ShapefileDataStore

ArcGridGCE

WFCDataStore

WebMapClient

Layer Manager

Layer: ROAD WFCGridReader

Layer: STREAM WFCGridReader

Layer: bugsites.shp

Layer: spearfish.dem GridReader

Transaction

Layer: archsites.shp

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

FeatureMap

Context Model

Viewport Model

LayerDefinition: Roads

LayerDefinition: Streams

LayerDefinition: Bug Sites

LayerDefinition: Restricted Area

LayerDefinition: Elevation

Extent Projection

Roads (wfs)

Streams (wfs)

Layers

(layer) (transaction)

Bug Sites (shp)

Arch Sites (shp)

Restricted Area (shp)

Elevation (arcgrid)

Renderer Manager

Spearfish

(viewport) (edit)(selection)

U
pd

at
e

D
ra

w

Selection Manager

Query

Selection Model Filter

Q
ue

ry

Notify

N
ot

ify

Query

WMCRenderer

WMCReader Raster
GETMAP for Extent
- ROAD, RIVER in Projection

FeatureRenderer

FeatureStore RasterQuery
bugsite + Extent Style

Selection

FeatureRenderer

FeatureStore Raster
Query
archsite + Extent Style

Selection

GridRenderer

GridReader RasterParams

Q
ue

ry

Not i
fy

N
ot

ify

N
ot

ify

TransformGridCoverage

Figure 15: Rendering Interaction Diagram

This section lists the requirements for each of the critical components in the
Rendering module.

- 52 -

10.1 Rendering Manager
The Rendering Manager is responsible for determining which renderer types
should be instantiated to satisfy a request, and determines what changes need to
be made during the system's lifetime.

For example, a different renderer may be required for a layer that is editable than
for a layer that is not editable.

Non-Functional Requirements:

• Extensible, must have a simple process for adding new renderer
implementations.

• Multiple Layer Scalability, as the number of layers increases the Rendering
module continues to respond to the user’s actions in a timely manner. When
the number of layers gets very large a linear decrease in performance is
acceptable.

• Viewport Size Scalability, as the size of the Viewport increases, the
Rendering module can continue to respond to user’s actions in a timely
manner. As the resolution of Viewports nears printer resolutions, the
RenderingManager’s decision-making will become similar to the PrintEngine’s.

Functional Requirements:

• Viewport Controller, acts as the Controller for the Viewport Model as
visualized by the Viewport Editor

• Layer Access, acts as an intermediary between the Viewport Editor and
LayerManager.

• Event Handling, receives events from ContextModel.

• RenderStack Management, decides which Renderers to use when defining
the RenderStack for the current ContextModel.

• Renderer Selection, chooses a layer renderer based on aspects such as
visibility, selectability, and editability.

For the same Layer a WMCRenderer may be used for rendering speed, while a
WFCRenderer would be required for editing.

• When choosing a layer renderer the tradeoffs between server- and client-
side reprojection should be considered.

• The choice of layer renderer is also dependent on the size of the viewport
and the number of layers that need to be rendered.

• WMCRenderer Aggregation, several layers may be combined into a single
WMCRenderer request.

• Decorator Renderers, support layers such as Legend and Scalebar

• Viewport Selection, provides hooks to query the RenderStack for selection
information.

- 53 -

10.2 Viewport Model
The Viewport Model is the data model for the UI Viewport component (see Section
7.2). The Area of Interest, CRS, and decorators are all maintained in the
Viewport Model. The Viewport Model, like most models, raises events when it is
modified.

Functional Requirements:

• Extent, provides the Area of Interest (AOI)

• Coordinate Reference System, describes the projection associated with the
Viewport

• Events, raises events when model data is modified

• Decorators, Maintains the list of decorators used in the Viewport and their
state. For example, a grid for editing may be turned on and have a spacing of
5 kilometers between grid lines.

There may be multiple Viewports; each displaying different areas of the data set.

- 54 -

10.3 Renderer
A Renderer is responsible for rendering a layer to a Graphics2D for printing, or
producing a Render Image for the screen.

Non-Functional Requirements:

• Viewport Size Scalability, as the size of the Viewport increases, the
Rendering module continues to respond to the user’s actions in a timely
manner.

Functional Requirements:

• RenderImage, suitable for rendering on screen. This is often a RenderImage
although decorator or GridCoverage layers may choose to provide a derived
RenderImage directly.

• Graphics2D draw, suitable for use with printing.

• Layer Visibility, responds to layer visibility status changes.

• Progress Notification, is required for drawing offline, and timing screen
refreshes.

• Completion Notification, is required for use with printing.

• Selection Renderer, for layers that allow selection, an additional (optimized)
Renderer for selection may be used.

• Selection Query, provides a Filter for a given extent capturing any selected
content.

- 55 -

10.4 RenderStack
RenderStack contains the Renderers and is responsible for merging all the
Render Images created by the Renderers with JAI, and updating the viewing area.

Non-functional Requirements:

• Immediate Selection Feedback, allows Selection Manager to provide
immediate feedback based on the RenderImages.

Functional Requirements:

• RenderImage Merging, merges the results of the Renderers together in a
specified z-order.

• Update Display Widget, notifies display widget to paint the final raster.

• Extent Query, provides layer and filter information for the generation of
tooltips, or additions to the Selection Model.

• Renderer Ownership, contains all Renderers.

• Notification, handles notification from Renderers to interested parties.

- 56 -

10.5 FeatureRenderer
The FeatureRenderer accepts a FeatureSource from a Layer and generates a
Query based on the Viewport Model. The results of the Query are styled and
rendered to RenderedImages as Java2D shapes.

The FeatureRenderer is used to render Database, Shapefile and WFS DataStores.

Non-functional Requirements:

• Performance, render a feature set in 3-5 seconds

• Progressive, displays the rendered data progressively during rendering rather
than waiting for the rendering to complete before displaying

Functional Requirements:

• Feature Rendering, renders features from a feature store using a single
Query based on the current Viewport Model

• Reprojection, between the following coordinate systems (CS) as required:

• Server CS, original CS used to store features natively by the DataStore.

• Data CS, the CS Feature data arrives from the DataStore. This will be
either Viewport CS for DataStores that support reprojection, or Server CS
for DataStores that do not support reprojection.

• Viewport CS, the CRS used by the Viewport; units and orientation are
expressed in Geographical terms.

• Java2D CS, the coordinate system used by Java2D for Rendered Image;
units measured in pixels.

• Device CS, the final coordinate system used by the screen or printer. Each
"unit" is a pixel of device -dependent size.

• Styling, styles features with a Third-Party Plug-In or Default SLD styling

• Selection Renderer, provides a slaved renderer that captures selected
features onto a separate RenderImage.

• The slaved renderer will also be capable of making a modified Query
(Viewport Model + Selection Filter) when used for printing.

• Selection Styling, render selected Features based on a selection SLD.

• Event Handling, handles the following events:

• Context Notification, changes to styling or visibility.

• Viewport Notification, changes to Extent or SRS.

• FeatureStore Notification, changes to Features due to editing.

• Selection Model Notification, changes to Layer Selection.

- 57 -

10.6 WMCRenderer
The WMCRenderer accepts a WMCRequest from one or more consecutive Layers
and generates WMS GETMAP request(s) based on the Viewport Model. The
results of the GETMAP request are rendered to RenderImage.

Non-functional Requirements:

• Immediate Response, immediate response is required for zooming and
panning operations (even if the response is from a cache or transparent).

• Latency, buffer previous requests allowing for immediate feedback;
continuous feedback is required during WFC requests.

• Performance, non-blocking generation of Buffered Image; notification will be
used to report on progress and produce redraws.

Functional Requirements:

• WMC Rendering, renders a RenderImage from a WMS using one or more
GETMAP requests based on the current Viewport Model

• GETMAP Request, produced from one or more Layers. Several requests may
be issued and tiled together based on the limitations of the backing WFS.

• Multiple Layers, the WMCRenderer can handle several Layers

• SLD, used to specify the styling for the GETMAP request

• Layer Visibility, a composed WMS request only requests Layers that are set
as visible

• RenderedImage, the results of a GETMAP request are rendered onto a
RenderImage for display. If the WMC is able to provide a rough renderer
based on cached data while waiting for the GETMAP request, offline
notification can be used.

• Notification, provided as content arrives from one or more GETMAP
requests.

• Graphics2D draw, to support printing, several GETMAP requests will need to
be requested at printer resolution, and tiled together as a series of
Graphics2D draw image calls.

- 58 -

10.7 GridCoverageRenderer
The GridCoverageRenderer takes a GridCoverage and derives a RenderImage
based on the required reprojection.

Non-functional Requirements:

• Immediate Feedback, during a zoom or pan operation response should be
immediate

• Latency, latency on initial GridCoverage creation should be immediate for
local files; continuous feedback is required for remote files.

• Instant Feedback, when zooming in, the raster pipeline will attempt to give
immediate feedback by performing a manual zoom on the selected area
(within one second). It will then go and get the actual requested object (within
three to five seconds).

Functional Requirements:

• GridCoverage Rendering, renders a GridCoverage. The Viewport Model is
used to project the GridCoverage to the Screen Coordinate System (the
coordinate system used by the screen.)

• SLD, style the input as dictated by an SLD

• Graphics2D draw, the RenderImage is drawn directly to a Graphics 2D. The
projection to Screen/Device Coordinates will provide a re -sampling of the
original GridCoverage.

- 59 -

11 PRINTING MODULE REQUIREMENTS

Similar to the Rendering module, the Printing module is an extension that is
critical for satisfying the uDig project requirements. The Printing module has the
functionality required for printing user-defined maps. The Printing module has a
strong dependency on the Rendering module because it uses Renderers for
rendering.

The crucial difference between Rendering and Printing is that we cannot use
RenderImage and JAI to combine the output of Renderers. Instead, the
Graphics2D provided by the Java2D Printing API must be used.

The size and resolution of the Java2D Printing Graphics2D provides an
interesting challenge for some of the renderers. In particular, WMCRenderer
needs to issue several GETMAP requests and tile together the result at the
resolution of the Printer.

Project

Local Catalog

GISFolder:
Directory

GeoServer:
WFS/WMS

ShapefileDataStore

ArcGridGCE

WFCDataStore

WebMapClient

Page

Printing Map Model

LayerDefinition: Roads

LayerDefinition: Streams

LayerDefinition: Bug Sites

LayerDefinition: Restricted Area

LayerDefinition: Elevation

Printing Engine

FeatureRenderer
WFCReaderGETFEATURE for Extent,roads

FeatureRenderer
FeatureStoreQuery bugsite + Extent Style

GridRenderer
GridReader DrawParams TransformGridCoverage

LayerDefinition: Bug Sites (Selection)

Decorator: Scalebar

Draw

Draw

FeatureRenderer

FeatureStoreQuery bugsite (selection) + Extent Style Draw

Page Manager

Layer: ROAD WFCGridReader

Layer: STREAM WFCGridReader

Layer: bugsites.shp

Layer: spearfish.dem GridReader

Layer: archsites.shp

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

Q
u

er
y

Scalebar

Style

Extent Projection Box

Box

Query

FeatureRenderer
WFCReaderGETFEATURE for Extent,roads DrawStyle

ScalebarRenderer Draw

FeatureRenderer

FeatureStoreQuery archsite + Extent Style Draw

P
rin

t

Create

Figure 16: Printing Interaction Diagram

- 60 -

11.1 Layout
A layout represents the way graphics are arranged on a Page. Layouts usually
feature a Viewport and several additional decorators.

Functional Requirements:

• Template, a specification of how a Page can be organized

• Provided Templates, a set of templates are provided so the user can easily
create a Page.

• Defaults, provide a default layout (map, legend, scalebar, compass)

• Persistence, user must be able to edit/save (may be supplied by allowing
export as Layout option for Page editing)

- 61 -

11.2 Page
Page is intended to allow a user to save a page that they have printed so that
they can print it again, or perhaps even send it to someone else who can then
print it.

Functional Requirements:

• Instance, layout acts as a Template/Prototype for making one of these

• Printing Context Model, manages Printing Context, similar to
LayerManager’s use of Context Model and Viewport Model

• Persistence, saves knowledge of the printer and the layout (this may not be
portable)

- 62 -

11.3 Printing Context Model
The PrintingContextModel is derived from a ContextModel used for display and is
joined with data from the ViewportModel and the SelectionModel.

Functional Requirements:

• Layer Data, encapsulates the layer data as LayerRefs. LayerRefs have style
information.

• Decorator Data, encapsulates decorators that are integral to the map (the
equivalent decorator data contained by the Viewport.) These decorators are
different from the decorators contained in the Layout

• Viewport Data Model, contains the Area of Interest and CRS.

A Page may contain several PrintingContextModels based on its original Layout.

- 63 -

11.4 Printing Engine
The printing engine takes a Page and a printer and begins a specific rendering
pipeline.

Functional Requirements:

• Page, provides Layout and Printing Context Model for output

• Printer, provides access to a Java2D PrintJob (may also be provided by a
PDF library)

• Local Catalog, constructs what is to be printed from a PrintingContextModel
using Metadata and Connection information from Local Catalog

• Renderers, constructed from LocalCatalog and PrintingContextModel, provide
output of Spatial information to a Graphics2D from the Printer

• Operation Control, provide ability to cancel any ongoing operations

Printing Engine is "smart;" it determines whether a given WMS and WFS share
the same source, and can use either to retrieve the same data. For printing, this
will allow it to use WFS when available for the accuracy of vector data.

May need to separate out WMS requests into separate calls tiled together on the
client side at native printer resolution.

- 64 -

12 UDIG EXTENSION MODULE REQUIREMENTS

The ability to extend the uDig project is one of its central measures of success. A
strong extension Framework is seen as a key provision facilitating an open
source community. By providing an extension framework, the initial outlay to
join the community is reduced, and the administrative overhead associated with
contribution is reduced.

Project

Selection Manager

Selection Model Filter

Local Catalog

GISFolder:
Directory

GeoServer:
WFS/WMS

ShapefileDataStore

ArcGridGCE

WFCDataStore

WebMapClient

Map

Context Model

Viewport Model

LayerDefinition: Roads

LayerDefinition: Streams

LayerDefinition: Bug Sites

LayerDefinition: Restricted Area

LayerDefinition: Elevation

Extent Projection

Extention

Query

Catalog

GISFolder Params

GeoServer Params

Postgis Params

Query

D
e

fin
e

Issues Manager

C
al

lb
a

ck

Issue Model

Issue Filter

Issue Filter

Callback

Add

Layer Manager

Layer: ROAD WFCGridReader

Layer: STREAM WFCGridReader

Layer: bugsites.shp

Layer: spearfish.dem GridReader

Transaction

Layer: archsites.shp

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

FeatureStoreStyle

Feature Fence

Define
Q

ue
ry

Figure 17: Extension Interaction Diagram

A plug-in (extension) is developed by accessing and communicating with the
components exposed to the plug-in developers. The components are sometimes
referred to as hooks and extension points. The primary extension points
available to developers are the following:

• LayerManager

• ContextModel

• SelectionManager

• SelectionModel

• RenderManager

• Renderer

• StyleManager

• Style

- 65 -

To aid the development of Third Party Plug-Ins, a uDig Extension Framework will
be provided that allows the development of Plug-Ins through sub classing. For
example, a plug-in developer could extend a data operation class that would
contain the functionality for obtaining data, and the plug-in developer would only
have to provide the operation functionality.

Non-Functional Requirements:

• UI Guidelines, strong guidelines for UI creation/modification

• Quickstart, helpful classes and framework that allow developers to create a
plug-in in under 30 minutes including download time.

• Modular, modular Plug-In extension mechanism, with version and
dependency tracking.

• Application Integration, complete integration with the application, at both a
programmatic and user-interface level.

Functional Requirements:

• Data Access, provided via LayerManager, or Local Catalog depending on
plug-in intent

• Data Modification, connection to the user’s Transaction is maintained via
access to the LayerManager. Although a plug-in may provide its own
Transaction when working against the Local Catalog.

• Viewport Model, provides access/modification of extent and projection

• Selection Model, access to/modify current selections

• Issues Listing, access/modify issues list providing unified plug-in callback

• User Interface, define views, add menu items/toolbars, key short-cuts

• Operational Control and Feedback, cancel or pause/restart a running
operation, generate progress events

• Dependencies and Versioning, installation metadata to minimize conflict.

• Local Results, located locally for operation results.

• Threaded, framework has constructs and managers so that threaded plug-in
operation is simple for the plug-in developer.

- 66 -

13 SUMMARY

This document has listed the requirements of the uDig application. From the
application requirements, use-cases (not listed in this document) were derived.
The application has been divided into components, which were grouped into
logical modules. The use-cases were used to generate functional and non-
functional requirements for each component.

The requirements listed in this document will be used as a basis for the following
development processes:

• Developers Guide, the requirements will be referenced continually by the
uDig application developers throughout development.

• Acceptance Testing, the non-functional requirements will be used to
create acceptance tests. Acceptance tests will be used to verify that the
non-functional requirements are satisfied.

• Functional Testing, the functional requirements will be used to create
functional tests. The functional tests will be used to verify that the
functional requirements are satisfied.

• Design Documents:

o Application Design, the design of the uDig application in general.
The system design must be driven by the functional requirements
so that the final design will satisfy the application functional
requirements of the application.

o W FS Design, the design for the WFS client used by uDig. As with
the system design, the WFS design will be driven by the functional
requirements.

o User Interface Design, parts of this document discuss user
interaction requirements. These will be the basis of the User
Interface design.

o Extension Framework Design, the requirements for the Extension
Framework will be used as the basis for the extension framework
design.

