

 - 1 -

GEOTOOLS OPEN SOURCE GML PARSING

Contact: David Zwiers
Refractions Research Inc.
Suite 400 – 1207 Douglas Street
Victoria, BC, V8W 2E7 Canada
E-mail: dzwiers@refractions.net
Phone: (250) 383-3022
Fax: (250) 383-2140

GOAL
The goal of this project is to provide a Web Feature Server (WFS) client library for the
open source community. This client should be capable of reading and writing to an Open
GIS Consortium (OGC) compliant WFS, including transaction and locking support.

PROBLEM
WFS responses consist of GML documents, which can be both very large, and very
structurally complex. Building a parser that is both high performance (for large
documents) and extremely flexible (for arbitrary user-defined GML documents) is a
difficult balancing act.

Web Feature Server

GML

XMLSchema

GML
Document

extends

DescribeFeatureType

GetFeature

defined by

Response

Response

Links

Client

FeatureType

FeatureCollection

defined by
GML

Parser

request

SAX

Figure 1: Web Feature Server Workflow

GML documents include links to “schema” documents, which provide a description of
the GML document structure. The schema documents can themselves link to other
schema documents, which describe sub-structures within the document.

Processing complex XML structures like GML is usually done with a “memory based”
programming model, in which the entire document is parsed into memory structures, then
post-processed into the final output objects. Processing large XML documents is usually
done with an “event based” programming model, in which the parser is aware of the
document structure in advance, and can build the final output objects on the fly as the
document is read element by element.

The WFS client library needs a parser than can handle both cases at once – large and
complex GML documents. The parser must be able to operate in real time, against any
WFS server, against data sets of any size.

 - 2 -

SOLUTION
The solution is an extremely general XML parser, capable of consuming any XML
schema and document, but with hooks for previously “known” schemas, such as the
GML schema and WFS schema. For unknown portions of the document, the parser can
use a memory-based approach, while for known portions, the parser can use a high-
performance event-based approach.

Parsing GML documents is really a special case of parsing an XML document where
some types of elements (such as geometries) are handled in a special way. We use the
XML inheritance structure as a guide to how each document element should be parsed.

PARSING THE SCHEMA

For example, when looking at the first Schema fragment below we can see the declared
inheritance in the park_Type definition “base=gml:AbstractFeatureType”. This
inheritance information allows the parser to identify the park element in the XML
example as a “Feature”. When the parser processes the GML document containing the
first XML fragment, the park elements can be parsed as Feature Objects.

Sample XML Fragment 1 Sample Schema Fragment 1
<park>

 <gml:boundedBy>

 <gml:Box srsName="EPSG:42304">

 <gml:coordinates>

 245524.015625,3585946.750000

 504494.156250,3830124.250000

 </gml:coordinates>

 </gml:Box>
 <gml:polygonProperty>

 …

 </ gml:polygonProperty>

 < AREA >40< AREA >

…

</park>

<element name="park" type="myns:park_Type"

 substitutionGroup="gml:_Feature"/>

<complexType name="park_Type">

 <complexContent>

 <extension base="gml:AbstractFeatureType">

 <sequence>

 <element ref="gml:polygonProperty" minOccurs="0"/>

 <element name="AREA" type="string"/>
 …

 </sequence>

 </extension>

 </complexContent>

</complexType>

To understand the complete inheritance tree for a particular element, we need to parse the
XML Schema. WFS users extend GML types, such as Feature, to include their own
additional data. Our parser follows the XML schema inheritance tree until it finds
elements it can map to a “well known” type.

 - 3 -

GML

XS

Park

AbstractFeatureType

polygonProperty Polygon

String

extention

element:ref

element:Area
sequence

polygon

Geometry

extention

Figure 2: XML Schema Extension

XML schemas can include links to other schemas which define the structure of sub-
components of the XML document. For example, in the fragments below, the opening
tag for an XML document refers to two schemas: the WFS specification schema; and a
user defined schema. The user defined schema in turn refers to the GML schema.

Sample XML Fragment 2 Sample Schema Fragment 2

<wfs:FeatureCollection

 xsi:schemaLocation="http://www.opengis.net/wfs

 wfs/1.0.0/WFS-basic.xsd http://www.ttt.org/myns
myns.xsd">

<schema targetNamespace="http://www.ttt.org/myns"

 elementFormDefault="qualified" version="0.1">

 <import namespace="http://www.opengis.net/gml"

 schemaLocation="gml/2.1.1/feature.xsd"/>

PROCESSING THE DOCUMENT

Our solution to processing these nested structures quickly is to provide a pre-parsed
version of “well known” schemas to the parser, which may include functionality to parse
“well known” elements. This approach allows us to provide high performance
functionality at any level of the XML inheritance tree.

When our parser processes an XML document, it follows the XML schema inheritance
tree upwards until it finds a pre-defined processor capable of handling the data, or until it
reaches the root of the inheritance tree. When the parser reaches the root of the
inheritance tree without finding a pre-defined processor, the data is encoded using a
default memory-bound algorithm.

XML Parser

User’s XML Schema

GML

XS

Park

AbstractFeatureType

Polygon

String

valueOf:Polygon

valueOf: String

valueOf: Feature

processing

delegate

Figure 3: GML Parsing

 - 4 -

CURRENT CAPABILITY

Currently we have processing extensions for GML 2.0, Xlink and XML Schema
SimpleType Schemas. The next phase of this project add a WFS 1.0.0 Schema extension
added to the list of “well known” structures. The GML processing extension avoids the
use of in-memory collections, thereby allowing very large datasets to be processed on the
fly.

In the future, other extensions can be easily added to include user defined schemas, or
new standard schemas, providing additional validation and performance optimizations.

RELATED WORK

Another Open Source GML processing project, GML4J, also provides a GML 2.0 parser,
based on JDOM, a memory dependant XML parser. GML4J was written and released by
Galdos Systems Inc in 2002. GML4J is an interpreter for the resulting memory model of
the JDOM parser, and as such may validate when JDOM validates, and is also capable of
parsing GML fragments (GML without namespace declarations).

 GeoTools GML4J

Scaleable ü
Customizable ü

Validating ü ü
Parses Fragments ü

RESULTS

This project has already produced an Extensible XML Parser, with GML extensions. The
GML extensions are capable of reading features as they are available without a large
memory overhead, removing the need for all the features to reside in memory.

Feature Visualization

GML
WFS Client

Reader/Writer

REFERENCES

uDig – http://udig.refractions.net
GeoTools – http://geotools.org
GML 2 Specification – http://www.opengis.org/docs/02-069.pdf
WFS Specification – http://www.opengis.org/docs/02-058.pdf
GML4J – http://gml4j.sourceforge.net/

