
Data Access Developer’s Guide

uDig

October 12, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Jody Garnett
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7
 E-mail: jgarnett@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

1 INTRODUCTION...4

2 UDIG PLATFORM ARCHITECTURE..5

2.1 UDIG DATA ACCESS TIERS ..6

3 TIER ZERO - STANDARDS AND EXISTING TOOLKITS ..7

3.1 DISCOVERY...8
3.2 CATALOG..8
3.3 DATASTORE READ ...9
3.4 DATASTORE WRITE ...10
3.5 DATASTORE CREATION ...11
3.6 REPOSITORY...11
3.7 GRID COVERAGE EXCHANGE ..12

4 TIER ONE – FILES, SERVICES AND TRANSACTIONS ...13

4.1 DIRECT TOOLKIT ACCESS (FORBIDDEN)...13
4.2 CATALOG ACCESS..14
4.3 TOOLKIT ACCESS ...14
4.4 CATALOG EXTENSIONS..15

4.4.1 Extension net.refractions.udig.catalog.content ..15
4.4.2 Extension net.refractions.udig.catalog.service ..16

4.5 DISCOVERY EXTENSION ..17
4.5.1 Extension net.refractions.udig.catalog.discovery..17

4.6 CATALOG USER INTERFACE EXTENSIONS ..18
4.6.1 Extension net.refractions.udig.catalog.ui.service..18
4.6.2 Extension net.refractions.udig.catalog.ui.featureType..19

5 TIER TWO – FEATURETYPES..20

5.1 PROJECT EXTENSION POINTS ...20
5.1.1 Extension net.refractions.udig.project.persistence ..20
5.1.2 Extension net.refractions.udig.project.templates...20
5.1.3 Extension net.refractions.udig.project.layerOp ...21

6 TIER THREE – LAYERS AND FEATURES...22

6.1 EXTENSION POINTS ..22
6.1.1 Extension net.refractions.udig.project.ui.decorator ..22
6.1.2 Extension net.refractions.udig.project.ui.render ...23
6.1.3 Extension net.refractions.udig.project.ui.tool ..23

APPENDIX A – ONLINE EXTENSION POINT DESCRIPTION..25

APPENDIX B – DATASTORE CONNECTION PARAMETERS...26

APPENDIX C – METADATA..27

ISO/DIS 19115 GEOGRAPHIC INFORMATION ..27
ISO 19119 SERVICE METADATA SERVICE ..28

- 3 -

TABLE OF FIGURES

Figure 1: UDIGApplication extends Runtime..5

Figure 2: UDIG Data Access Tiers ..6

Figure 3: DataStore Read Access..9

Figure 4: DataStore Write Access ...10

Figure 5: Extension Point Description ..25

- 4 -

1 INTRODUCTION

The User-friendly Desktop Internet GIS (uDig) Platform is an extensible
framework for GIS application development. The uDig Platform is based on the
Eclipse Rich Client Platform (RCP).

The Eclipse RCP is structured around the concept of plug-ins: structured
bundles of code that contribute functionality to the system. Plug-ins are
integrated with the existing system through well-defined extension points.

This document describes the access of spatial information from the perspective of
a developer implementing an extension point defined by the uDig Platform.

uDig makes use of the feature model provided by the Geotools toolkit. In
addition to these formal extension points, the Geotools data access model is
permitted.

- 5 -

2 UDIG PLATFORM ARCHITECTURE

The Rich Client Platform is structured around the concept of plug-ins. Plug-ins
contribute to the system only through extending existing plug-ins. Plug-ins may
define their own extension points allowing others in turn to contribute behavior.

The architecture allows for interaction without direct dependence, similar to the
Java event model. The difference between this extension point system and the
traditional publish/subscribe model of events is two fold:

1. A third party, known as Platform, plays the part of a Mediator: a series of
plugin.xml files are read, in which each plug-in defines its own extension
points and those it extends.

2. At runtime a Plug-in can ask the Platform for a list of Plug-ins “listening” on a
given extension point.

To bootstrap this process the RCP provides a set of core plug-ins to start things
off. The uDig Application extends an Application’s extension point.

Runtime

. . .

UDIGApplication

org.eclipse.core.runtime.applications

Figure 1: uDig Application extends Runtime

This design allows for incredible scalability, and a fast startup. Plug-ins are not
loaded until required, and may be unloaded when not in use.

- 6 -

2.1 uDig Data Access Tiers
The uDig Application is divided into tiers based on the level of data abstraction.

RCP Tier 1

Runtime

Workbench

Help

Search

Catalog

Discovery
Tier 2

Project

Template

Map

Page

Tier 3

Box

Renderer

Tier 0
Geotools GeoAPI

Platform

Tool

Decorator

Figure 2: uDig Data Access Tiers

A uDig plug-in communicates with spatial information via the interfaces defined
for its tier. When extending the uDig application you should keep this in mind –
or you may end up doing more work than you need to.

Tier 0: Toolkit Access The Toolkits used by uDig provide their own plug-in
architecture (which is beyond the scope of this
document).

Tier 1: Catalog Files, Services and Transactions

Tier 2: Project FeatureTypes

Tier 3: Rendering Layers and Features

In each case, moving up to a higher tier provides you with a more specific data
abstraction, and more work is done for you behind the scenes.

- 7 -

3 TIER ZERO - STANDARDS AND EXISTING TOOLKITS

uDig currently is influenced by the following toolkits:

• Geotools – provides data sources, rendering and other services

• Deegree – reference implementation of Catalog Services version 2.0

• GeoAPI – defines OGC compliant interfaces

Between these projects we have several interfaces for data access and discovery:

• Discovery – (pending) from Catalog Services version 2.0

• Catalog – from Catalog Services version 1.0

• DataStore – data sources via a FeatureType model

• Repository – used for cross-data-source operations

• Grid Coverage Exchange – access to Raster formats

We have chosen to use these interfaces, where possible, when advertising the
capabilities of the UDIG framework. This has been done for two reasons:

1. GeoAPI interfaces are often standards-based; we can assume that
existing GIS developers will be familiar with the abstractions and
terminology therein

2. Allows for client code reuse with other toolkit-based projects

Over the course of this project we will be simplifying several of these interfaces.

- 8 -

3.1 Discovery
Catalog Services version 2.0 defines a revised Catalog model with an explicit
Discovery interface.

Intended implementation:

interface Discovery extends Catalog{
 RecordType describeRecord(RecordTypeRequest request)
 Domain domain(DomainRequest request)
 Present present(PresentRequest request)
 QueryResponse query(QueryRequest request)
}
interface QueryResponse {
 String getResultSetID()
 ResultType getResultType()
 Collection<Record> retrievedData()
 int getCursorPosition()
 int getHits();
}

The specification currently defines retrievedData as a String (that would require
parsing). In the proposed API above, Record would be similar to CatalogEntry in
the next session.

3.2 Catalog
GeoAPI defines a Catalog API based on the Catalog version 1.0 document. This
API consists of the following interfaces:

interface Catalog {
 void add(CatalogEntry);
 void iterator();
 QueryResult query(QueryDefinition query);
 void remove(CatalogEntry);
}
interface CatalogEntry {
 String getDataName();
 Map(<String>,<Metadata>) metadata();
 Object getResource();
}

MetadataEntity is a placeholder for Metadata Information. Please see Appendix C
for an overview of applicable Metadata information.

- 9 -

3.3 DataStore Read
DataStore is the Geotools API for data source access. It is used to access both file
and Service information. Wide ranges of data sources are supported from simple
Shapefile access through to Database and Web Feature Services.

DataStore operates on an OGC Feature Model notable in its use of XPATH
queries to access nested attribute type information. Creation of everything from
FeatureTypes to Filter Expression is controlled by the use of Factories.

Figure 3: DataStore Read Access

As the above diagram illustrates, there are two APIs for access to spatial
information:

• FeatureReader: an iterator of Features (sequential access)

• FeatureSource: provides getBounds, getCount and getFeatures
operations. For most DataStore implementations these are optimized to
make use of the native functionality of the underlying service.

In addition to the API above many DataStores implement Catalog to provide
access to Metadata based FeatureType queries. In this case the
CatalogEntry.getResource() returns the FeatureSource associated with the
FeatureType.

- 10 -

3.4 DataStore Write
DataStore offers a comprehensive writing API with support for Transactions and
optimized updates.

Figure 4: DataStore Write Access

This time there are four classes to consider:

• Transaction: offers workflow control and rollback. Can be used with
several DataStores at once.

• FeatureWriter: an iterator of Features supporting modification.

• FeatureStore: provides add, update and remove as high level requests
that are optimized for most DataStores.

• FeatureLock: offers locking for the duration of a Transaction and WFS
Style Long Term Transaction support.

- 11 -

3.5 DataStore Creation
As promised, even DataStore creation is controlled by use of a Factory.

interface DataStoreFactorySpi {
 boolean canProcess(Map params);
 DataStore createDataStore(Map params);
 DataStore createNewDataStore(Map params);
 String getDescription();
 Param[] getParametersInfo();
 ParameterGroupDescriptor getParameterGroup();
}

The map used to create a DataStore is described by:

• A legacy getParametersInfo() method

• ParameterValueGroup1 adapted for general use by GeoAPI

There are several difficulties with this approach:

• A Map is not optimal – for drag and drop support we would like to use a File
or URL directly

• The ParameterValueGroup is difficult to understand

• ISO 19119 is designed to describe Services

The plug-in system FactorySPI is used to “discover” the appropriate
DataStoreFactory based on a Map of parameters. In practice many
DataStoreFactory implementations require a “magic” key be entered in Map to
support this functionality.

It is likely that DataStore will be simplified over the coming weeks to take these
factors into consideration.

3.6 Repository
Offers cross DataStore operations, and FeatureSource access by namespace URI
and type name irrespective of DataStore.

Interface Repository {
 Map getDataStores();
 SortedMap getFeatureSources();
 Set getPrefixes();
 boolean lockExists(String lockID);
 boolean lockRefresh(String lockID, Transaction transaction)
 boolean lockRelease(String lockID, Transaction transaction)
 FeatureSource source(URI namespace, String typeName)
}

1 OpenGIS® Spatial Referencing by Coordinates (Topic 2), http://www.opengis.org/docs/03-073r1.zip

- 12 -

It is an interesting consequence of Locks being held across DataStores that a
central Repository is required to unlock them safely.

3.7 Grid Coverage Exchange
Grid Coverage Exchange2 provides access to Grid Coverage information. This
has been assembled as part of the uDig project, and has been donated to the
GeoAPI project.

interface GridCoverageExchange {
 void dispose();
 Format[] getFormats()
 GridCoverageReader getReader(Object source)
 GridCoverageWriter getWriter(Object destination, Format format)
}
interface Format {
 String getDescription()
 String getDocURL()
 String getName()
 ParameterValueGroup getReadParameters()
 String getVendor()
 String getVersion()
 ParameterValueGroup getWriteParameters()
}
interface GridCoverageReader {
 String getCurrentSubname()
 Format getFormat()
 GridCoverage read(GeneralParameterValue[] parameters)
}
interface GridCoverageWriter {
 Object getDestination()
 Format getFormat()
 void write(GridCoverage coverage, GeneralParameterValue[] parameters)
}

The one difficulty with the above API is that one gets no indication what the
source parameter is when acquiring a GridCoverageReader. Once again Catalog
has stepped in to the rescue. Many GCE implementations are using the Catalog
API to provide client code with an avenue to discover a source parameter (based
on a remote Web Map Server, or a local file system).

The complete API also provides facilities for GridCoverageReader and
GridCoverageWriter to be used with streamed content. This has been omitted for
brevity.

2 Grid Coverages Implementation Specification, http://www.opengis.org/docs/01-004.pdf

- 13 -

4 TIER ONE – FILES, SERVICES AND TRANSACTIONS

Tier One represents the first level of the uDig Platform. There is one service
provided over and above the raw functionality defined by the toolkits: the
prevention of File and Service duplication.

4.1 Direct Toolkit Access (Forbidden)
The usual method of accessing information from a Shapefile is as follows:

// Define Connection parameters for the shapefile
Map params = new HashMap();
Map.put(“url”, shapeURL);

// Connect!
DataStore store FactoryFinder.createDataStore(params);
String typeName = store.getTypeNames()[0];
FeatureSource source = store.getFeatureSource(typeName);
FeatureType type = source.getSchema();

Expr expr = Exprs.attrb(“name”).eq(“Victoria”);
FeatureResults results = source.getFeatures(expr.filter(type));

FeatureReader reader = results.reader();
try {
 while(reader.hasNext()){
 System.out.println(reader.next());
 }
}
finally {
 reader.close();
}

To adapt this code for use in uDig we must not:

• make use of FactoryFinder; nor

• construct our own DataStore by hand.

- 14 -

4.2 Catalog Access
Many DataStores would really like to be singletons (they may maintain a cache of
Database Connections, for example). It is up to us, the developers, to prevent
more than once instance being created for the same data source.

Normally, when you use Geotools you are on your own; but this time you have
Catalog to help.

Map params = new HashMap();
Map.put(“url”, shapeURL);

DataStore store CatalogPlugin.findDataStore(params);

In addition there are several helper methods:

Object CatalogPlugin.open(File file)
Object CatalogPlugin.open(URL url)
Object CatalogPlugin.connect(ParameterValueGroup params)

4.3 Toolkit Access
The Catalog plug-in makes use of the traditional Geotools/GeoAPI data access
and discovery interfaces to allow for code reuse.

The Registry uses the IAdaptable facilities provided by Eclipse to allow the
support of an arbitrary interface.

Registry registry = CatalogPlugin().getDefault().getRegistry();

registry.getAdapater(org.geoapi.catalog.Catalog.class);
registry.getAdapater(org.geoapi.catalog.Discovery.class);
registry.getAdapater(org.geotools.data.Repository.class);

There is a large body of code willing to operate against these APIs. In particular, a
complete set of validation tests operates against org.geotools.data.Repository and
is directly reusable.

- 15 -

4.4 Catalog Extensions
Catalog has one responsibility for client code:

• Catalog prevents duplicate DataStore instances.

4.4.1 Extension net.refractions.udig.catalog.content

The content extension point allows the plug-ins to contribute kinds of content
that the platform catalog understands. There are two forms of contribution: file
association and mime association.

A file association represents a file format and naming conventions. This
information is used during File import and File Drag-and-Drop operations.

A mime association represents a data stream format and mime type. This
information is used during URL import and URL Drag-and-Drop operations.

This extension point requires an implementation of
net.refractions.udig.catalog.IFileAssociation or
net.refractions.udig.catalog.IMimeAssociation.

This extension point is used internally to register existing Geotools capabilities
with the GIS Platform. You can use this extension point to provide additional file
associations to existing Geotools DataStores, or provide your own DataStore
implementation directly to the uDig Application, forgoing the Geotools
FactoryFinder.

To register your new data:

Registry registry = CatalogPlugin().getDefault().getRegistry();
registery.add(new FeatureSourceRegistryEntry(server));
registery.add(new GCRegistryEntry(gce));

If required, you may make your own instance of RegistryEntry:

interface RegistryEntry extends CatalogEntry {
 void addRegistryListener(RegistryListener listener)
 void removeRegistryListener(RegistryListener listener)
}

RegistryEntry operates as a CatalogEntry with event notification.

It is expected that getResource() is a FeatureSource, or GridCoverage when used
with File or URL association.

- 16 -

4.4.2 Extension net.refractions.udig.catalog.service

The service extension point allows plug-ins to contribute kinds of servers that the
platform catalog understands. There are two contributions: data source, and
open web service.

A data source represents a service captured by the Geotools DataStore API such
as a Database. The extension point offers persistence for connection parameters
at the project level. Authorization is maintained on a per user basis and will not
be shared between projects.

An open web service represents a service with a GetCapabilities document. The
extension point offers persistence for connection parameters at the project level.
Authorization is maintained on a per user basis and will not be shared between
projects. The framework operates as a true registry allowing an Open Web
Service to have its GetCapability cached.

The extension point requires an implementation of
net.refractions.udig.catalog.IDataSource,
net.refractions.udig.catalog.IOpenWebService.

This extension point is used internally to register existing Geotools capabilities
with the GIS Platform.

To actually register your new service:

Registry registry = CatalogPlugin().getDefault().getRegistry();
registery.add(new DataStoreRegistryEntry(server));
registery.add(new GCERegistryEntry(gce));
registery.add(new WMSRegistryEntry(wms));

If required, you may make your own instance of RegistryEntry:

interface RegistryEntry extends CatalogEntry {
 void addRegistryListener(RegistryListener listener)
 void removeRegistryListener(RegistryListener listener)
}

RegistryEntry operates as a CatalogEntry with event notification.

It is expected that getResource() is a Catalog when used with a DataStore, Grid
Coverage Exchange, or Service.

Note: It is common for Open Web Services such as WMS and WFS to extend both
net.refractions.udig.catalog.service and net.refractions.udig.catalog.content while
providing implementations of IopenWebService and ImimeAssociation.

- 17 -

4.5 Discovery Extension
Discovery is used to connect Catalog and Discovery Services to the RCP Search
System.

4.5.1 Extension net.refractions.udig.catalog.discovery

The discovery extension point allows plug-ins to contribute kinds of catalogs that
the platform catalog understands. There is a single contribution: discovery.

A discovery service represents a lookup service capable of being searched.
Parameter information and Authorization information are maintained on a per
user basis.

The extension point requires an implementation of
net.refractions.udig.catalog.IDiscovery.

This extension point is used internally to register the existing Catalog with the
Discovery system (as used by Search).

- 18 -

4.6 Catalog User Interface Extensions
This is the first really interesting extension point; one where you actually get to
affect what appears on the screen.

Many of the extension points support the use of the IOp interface to define user
interface needs. This represents a suitable compromise that can be maintained
both by uDig and Toolkit providers.

interface IOp {
 InternationalString getName();
 InternationalString getDescription ();
 Map params(Object resource);
}

The Map params is initially a set of “defaults” that may be used by the user to
configure the activity. The Map keys are of type InternationalString that are
suitable for display.

When this contribution is used to populate the context menu of a FeatureType in
the Catalog UI, a small wizard will be activated with the following workflow:

1. Based on resource selected, the appropriate IOps will be presented to the
user. The user selects the desired operation.

2. If the Map params is not null, a Dialog will be created and the user can
choose to modify the values. The resource is provided allowing the IOp to
supply custom defaults.

3. The appropriate op method will be called.

4. If an Exception is thrown it will be sent to the Log.
- You may wish to provide your own feedback via the issues list
 (ie. when performing data validation)

4.6.1 Extension net.refractions.udig.catalog.ui.service

Supports access of services, including the creation of new spatial information.

interface IDataStoreOp extends Iop {
 void op(DataStore service) throws Exception;
}
interface IWMSOp extends IOp {
 void op(WebMapServer wms) throws Exception;
}
interface IGCE extends IOp {
 void op(GridCoverageExchange gce) throws Exception;
}

- 19 -

4.6.2 Extension net.refractions.udig.catalog.ui.featureType

A slightly easier to use version of service, it operates at the level of a
FeatureSource. Client code is responsible for doing any Transaction stuff they
want.

The extension point requires an implementation of
net.refractions.udig.catalog.ui.IFeatureTypeOp.

IFeatureTypeOp receives several objects during execution of its op method:

interface IFeatureTypeOp extends IOp{
 FeatureType op(FeatureType schema) throws Exception;
}
interface IFeatureSourceOp extends IFeatureTypeOp {
 void op(FeatureSource source) throws Exception;
}
interface IFeatureStoreOp extends IFeatureTypeOp {
 void op(FeatureStore source) throws Exception;
}
interface ILayerOp extends IOp {
 void op(WMSLayer layer) throws Exception;
}
interface IGridCoverageOp extends IOp {
 void op(GridCoverage grid) throws Exception;
}

Note: When working with a FeatureStore actual data modification is expected;
the FeatureStore you receive will be using a Framework supplied and managed
Transaction. If your op completes without exception, the Transaction will be
committed.

- 20 -

5 TIER TWO – FEATURETYPES

Tier Two defines the bulk of the uDig Platform; at this level several new
constructs are available:

• Project: provides persistence of activity based information

• Map: provides visualization services and a viewport

• Page: physical output

• Layer: provides the combination of spatial information with an appearance

• Selection: filters selected by the user for “special” activity

In addition, several concepts are now managed by the user interface:

• Transaction: transaction control is now maintained by the Map

• Area of Interest: a viewport is defined by the Map indicating what is visible

5.1 Project Extension Points

5.1.1 Extension net.refractions.udig.project.persistence

Defines a persistence mechanism for plug-ins that wish to have information
stored with the project. Map and Page should use this extension point, but have
been optimized due to frequent use.

5.1.2 Extension net.refractions.udig.project.templates

Templates are used to create Pages to be sent to the printer. They are aware of
which paper sizes they are capable of working with, and must be accompanied
with a name, description and an optional preview graphic, to display to the user
what its outline looks like. The supported paper sizes are declared in the
extension point schema, allowing only the desired templates to be loaded.

Most templates, when created, will be given access to a Map, which can be used
to create other decorators, such as a legend or scalebar. No modifications should
be performed on the map when a template is created. The only instance where a
template should create a Page with no map, is when the given map is null. This
indicates that a blank Page is to be created.

Each extension shall extend the net.refractions.udig.project.AbstractTemplate
class.

public abstract class AbstractTemplate {
 public abstract String getName();
 public abstract String getDescription();
 public abstract Image getPreview();
 public abstract Page create(Map map);
}

- 21 -

5.1.3 Extension net.refractions.udig.project.layerOp

A layer operation extension is an extension that performs an operation on one or
more layers in a map. The layer operation extension point will allow
programmatic access to a layer. Layer operations would be listed under the layer
menu and in context menus in the layer view when a layer is right-clicked. In
order to provide a scalable solution, the layer operation extension point will
require an extension to declare a filter. The filter will allow the menu managers
to determine whether the layer operation is interested in the layer. If it is, then
the operation will be added to the menu. Otherwise, the operation will be left out
of the menu.

The following interface defines the layer object that a LayerOp obtains from uDig:

public interface Layer {
 public StyleMemento getStyle();
 public MetadataEntity getMetadata();
 public int getZOrder();
 public boolean isVisible();
 public String getName();
 public Query getQuery();
 public FeatureStore getFeatureStore();
 public FeatureSource getFeatureSource();
}

A LayerOp must implement the following interface:

public interface LayerOp extends IOp{
 public void op(Layer layer);
}

- 22 -

6 TIER THREE – LAYERS AND FEATURES

Tier Three defines the very narrow scope of rendering spatial information. This
tier starts to manage Printers, JAI, Image and Graphics 2D constructs for client
code.

6.1 Extension Points

6.1.1 Extension net.refractions.udig.project.ui.decorator

A Decorator adds meaning to a map or page. The Decorator interface that a
decorator extension must extend consists of a draw() method and a setToolkit()
method. The toolkit that is passed in provides context for the decorator. For
example, a scalebar requires a viewport model and the ability to calculate the
extent of a map; the toolkit provides access to that data. The toolkit that the
decorator receives is a read-only toolkit. A decorator is not permitted to change
uDig model information. It can only display information.

public interface Decorator {
 public void draw(ViewportGraphics graphics);
 public void setToolkit(Toolkit toolkit);
}

The toolkit class has the following interface:

public class Toolkit {
 public ViewportModel getViewportModel();
 public ContextModel getContextModel();
 public MapDisplay getDisplay();
 public Map getMap();
 public Project getProject();
}

A simple example of a decorator extension follows:

public class ImageDecorator implements Decorator {
 RenderedImage image;
 private Toolkit toolkit;
 public void draw(ViewportGraphics graphics) {
 graphics.drawImage(image, 0,0);
 }
 public void setToolkit(Toolkit toolkit) {
 this.toolkit=toolkit;
 }
}

- 23 -

6.1.2 Extension net.refractions.udig.project.ui.render

A Renderer interprets spatial data and represents the data in a visual manner. In
uDig there are different types of renderers that can render different types of data.
For example, a feature renderer can render feature data. A WMS renderer can
communicate with and render images from a web map server.

The API requires that a Renderer extension must create a RenderMetrics class,
which can provide metrics about how fast a renderer can provide its service; and
a RenderMetricsFactory class, which can determine if a data source can be
rendered by the renderer and can create RenderMetrics that provide metrics with
regard to a particular data source. Furthermore, a renderer extension must
provide an implementation of the Renderer Interface, normally by extending the
abstract superclass that handles threading and event notification for the
renderer.

public abstract class AbstractRenderer{
 protected abstract void stopRendering();
 protected abstract void draw(IProgressMonitor monitor);
 public abstract void render(Graphics2D graphics);
 public void setToolkit(RenderToolkit tools);
}

For the sake of simplicity and security a toolkit object is provided that the
renderer can use. The toolkit object is a facade for the renderers into the uDig
system. It provides access to the current map, project, viewport and display. It
also provides support methods such as pixelToWorld(), which calculates the
world location corresponding to a pixel in the display. Lastly, the renderer toolkit
provides access to the layer to be rendered and the service object that will
provide the spatial data.

public class RenderToolkit extends Toolkit {
 public Layer getLayer();
 public Service getService();
}

6.1.3 Extension net.refractions.udig.project.ui.tool

The tool extension point allows third-party developers to develop new tools for
uDig and is one of the most used points of extension. There are three different
type of tools and two ways of grouping tools. The three types of tools are as
follows:

• Action Tool - A single fire tool that performs a single action and is not modal;
a button that sets the viewport so it frames the current selection is an example
of an action tool. Action tools must implement the ActionTool interface.

- 24 -

• Modal Tool - A tool that has on and off modes. When a modal tool is "on" it
waits for user input and reacts on it. An example of a modal tool is the zoom
tool. Modal tools must implement the ModalTool interface and are
recommended to implement the AbstractModalTool class.

• Background Tool - A tool that is always active in the background. A typical
background tool would be limited to providing user feedback. An example is
the cursor position tool that displays the current mouse location in world
coordinates. Background tools must implement the Tool interface and are
recommended to implement the AbstractTool class.

To address the need to provide locations for large numbers of tools, developers
can add tools to views. In addition, a standard tool view is defined and new tools
are added to the tool viewer by default. It is recommended that if a large number
of tools are being added, then a new view should be created to hold the tool set.

The tool interfaces are as follows:

public interface Tool {
 public void setToolkit(RenderManager rmanager);
 public void fill(Composite parent);
 public void dispose();
}
public interface ActionTool extends Tool {
 public void run();
}
public interface ModalTool extends Tool {
 public void setEnabled(boolean active);
}

The setToolkit() method is called by uDig in order to provide a tool with a toolkit
object that it can use as a facade for accessing uDig, uDig command factories
and send command objects to uDig.

public class ToolsToolkit extends Toolkit{
 public DrawCommandFactory getDrawFactory();
 public EditCommandFactory getEditFactory();
 public NavigationCommandFactory getNavigationFactory();
 public SelectionCommandFactory getSelectionFactory();
 public void sendDraw(DrawCommand command);
 public void sendEdit(EditCommand command);
 public void sendNavigation(NavCommand command);
 public void sendSelection(Command command);
}

- 25 -

APPENDIX A – ONLINE EXTENSION POINT DESCRIPTION

This documentation has been exported from the current release of uDig 0.4. This
documentation is generated and is available as part of your Eclipse development
environment.

To view this Extension Point documentation in your Eclipse development
environment:

1. Navigate to the Extension points page of your Plug-in manifest editor.

Figure 5: Extension Point Description

2. Use the “Add...” button to add one of the uDig extension points described in
this document.

3. Select the extension point you just added.

4. Click “Open extension point description” to open a document similar to those
found in this guide.

- 26 -

APPENDIX B – DATASTORE CONNECTION PARAMETERS

Shapefile Options

Option Description Default

url URL of a shapefile

memory mapped buffer Enables/disables memory mapped IO true for file urls,
false for http urls

Web Feature Server Options

Option Capability

GET_CAPABILITIES_URL URL to a WFS GetCapabilities document.
(This is an explicit url you can use in a browser)

SERVER_URL
A URL to a WFS Service
(An incomplete URL that requires a "capability" to be
pre-pended)

Option Request Method

USE_POST Use "Post" to requesting content, allows complex
queries

USE_GET Use "Get" to requesting content, can be cached by
proxies

Option Authentication

USERNAME User name for HTTP authentication

PASSWORD Password for HTTP authentication

- 27 -

APPENDIX C – METADATA

The MetadataEntity referenced by the Catalog and Discovery APIs is a
placeholder for ISO 19119 or ISO 19115 Metadata information. This information
is used during the data discovery/search process.

ISO/DIS 19115 Geographic Information3
The following table lists Metadata information available through the Discovery
API according to XPath expression.

Table 1: Geographic Information Metadata

 Geographic Metadata

Title Identification.citation / Citation.title
Reference Date Identification.citation / Citation / Date.date

Identification.citation / Citation / dateType
Responsible party Identification.pointOfContact / ResponsibleParty
Geographic location DataIdentification.geographicBox

DataIdentification.geogrphicIdentifier
Dataset language DataIdentification.lauguage
Dataset character set DataIdentification.characterSet
Dataset topic category DataIdentification.topicCategory
Spatial resolution DataIdentification.spatialResolution / Resolution.equivalentScale

DataIdentification.spatialResolution / Resolution.distance
Abstract Identification.abstract

Distribution Format Distribution / Format.name
Distribution / Format.version

Extent information DataIdentification.extent / Extent

Spatial representation DataIdentification.spatialRepresentationType

Reference system ReferenceSystem

Lineage DataQuality / Lineage.statement

On-line resource Distribution / DigitalTransferOption.onLine / OnlineResource

Table 2: Metadata Information

 Metadata Elements

file identifier fileIdentifier

standard name metadataStandardName

standard version metadataStandardVersion

language language

Metadata character set characterSet

Metadata point of contact contact / ResponsibleParty)

date stamp dateStamp

3 Topic 11 – Metadata, http://www.opengeospatial.org/docs/01-111.pdf

- 28 -

ISO 19119 Service Metadata Service4
In addition to the queryable properties defined for Geographic Information above,
ISO 19119 defines the following useful properties for describing services.

 Service Metadata

Service Type IdentificationInfo/ServiceIdentification/serviceType

Service Type Version IdentificationInfo/ServiceIdentification/serviceTypeVersion

OperatesOn IdentificationInfo/ServiceIdentification/operatesOn/DataIdentification/

 citation/Citation/identifier

Operation IdentificationInfo/ServiceIdentification/
 containsOperation/ OperationMetadata/operationName

DCP IdentificationInfo/ServiceIdentification/containsOperation/

 OperationMetadata/operationName.DCP/*

Note: DCP information stands for “Distributed Computing Platform”; these entry
points describe the information available in an Open Web Services
GetCapabilities Document. Given the appropriate ISO 19119 DCP information
our client should not need to request a GetCapabilities Document to interact
with a service.

4 Application Profile for CSW 2.0, https://portal.opengeospatial.org/files/?artifact_id=6495

