
Rendering Technologies Report

May 18, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Jesse Eichar
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7
 E-mail: jeichar@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

1 INTRODUCTION ...4

2 UDIG RENDERER REQUIREMENTS..5

3 RENDERING BACKGROUND ..6

4 COMPARISON OF REVIEWED TECHNOLOGIES...7

5 GEOTOOLS J2D RENDERER...8
5.1 BASIC DESIGN..8
5.2 STRENGTHS ...10
5.3 WEAKNESSES...10

6 GEOTOOLS LITE RENDERER...11

6.1 BASIC DESIGN..11
6.2 STRENGTHS ...12
6.3 WEAKNESSES...12

7 JUMP RENDERER................................13
7.1 BASIC DESIGN..13
7.2 STRENGTHS ...14
7.3 WEAKNESSES...14

8 SWT OPENGL PLUG-IN..15

9 CONCLUSION..16

- 3 -

TABLE OF FIGURES

Figure 1: J2D Basic Architecture ... 8

Figure 2: J2D RenderLayer.. 9

Figure 3: Lite Renderer ... 11

Figure 4: JUMP Basic Architecture... 13

- 4 -

1 INTRODUCTION

This document compares the available rendering technology that may be used by
the User-friendly Desktop Internet GIS (uDig) project. The technologies reviewed
and compared in this document are the two renderers that are part of the
Geotools project (the j2d renderer and the Lite renderer), the JUMP renderer and
the SWT OpenGL plug-in.

All of these technologies have desirable features and areas that need
improvement. For example, Geotools j2d renderer has too large of a memory
footprint but has very effective zooming and panning functions. This document
lists the requirements of the uDig renderer and presents the strengths and
weaknesses of each of the reviewed renderers.

- 5 -

2 UDIG RENDERER REQUIREMENTS

The purpose of the uDig renderer is, at the most fundamental level, to take,
features, coverages and Style Layer Descriptors (SLDs) as input and produce an
image for the user to view. A more comprehensive list of requirements is as
follows:

• Feature Collections Must be Renderable
The uDig renderer must be capable of rendering collections of GIS Features.
See OGC 01-101, Feature Geometry, for an introduction to features.

• Raster Coverages Must be Renderable
Coverages, specifically grid coverages, must be renderable by the uDig
renderer. The OGC 00-106 specification introduces Coverages and the
related terminology.

• SLD styling
It must be possible for Style Layer Descriptors to be applied to a feature
collection for rendering. See OGC 02-070.

• Output to a Graphics2D object
The renderer should be able to display the data graphically on a Java Panel.

• Instant Feedback
A user of an application expects “instant gratification.” As soon as a request
is made the application should notify the user that the request is being made,
and, if possible, some indication of how the operation is progressing should
be provided.

• Scalable for very large datasets
Very large datasets, po tentially hundreds of megabytes, must be able to be
rendered with a typical computer.

• Reprojection
The renderer must have support for transforming between different
coordinate systems.

• Selection Integration
Selections should be styled in a different manner from other features and
should be raised so that selections are not hidden. Further, the renderer
must be able to identify a feature when given a pixel location from the display.

• Optimized for common tasks
The common tasks such as panning and zooming should be efficiently
implemented.

• Accurate Rendered Image
The image rendered by the renderer must accurately, at least double accuracy
(64 bit representation), represent the data passed to it.

- 6 -

3 RENDERING BACKGROUND

The OGC Style Layer Descriptor specification is a map-styling language for
producing georeferenced maps with user-defined styling. SLD specifies how a
feature is supposed to be displayed. Some options available are the colour of a
feature, how a line should be drawn (solid, dashed, 3 pixels thick, etc...), whether
the feature should be represented as a graphic and how features of its type
should be shown in the map legend.

- 7 -

4 COMPARISON OF REVIEWED TECHNOLOGIES

 j2d Lite JUMP OpenGL

Feature Rendering yes yes yes no

Coverage Rendering yes no yes yes

SLD Styling yes yes* no no

Graphics2D yes yes yes no***

Instant Feedback no no no no

Scalable no yes no yes

Reprojection yes no no** no

Selection Integration no no yes no

Optimized for Common Tasks yes no yes yes

Double Precision Accuracy no yes yes yes

* The Lite renderer does not provide SLD support for grid coverage rendering
** A new, and unreleased version of JUMP, provides support for Reprojection
*** SWT OpenGL renders to a SWT panel instead which could be useful

- 8 -

5 GEOTOOLS J2D RENDERER

The Geotools j2d renderer is an efficient rendering implementation, but has a
very large memory footprint. The j2d renderer has been optimized for operations
such as zooming and panning. In order to make these operations efficient, j2d
maintains a cache of off-screen images and also caches the geometries and
styling information of the features.

5.1 Basic Design

Figure 1: J2D Basic Architecture

The j2d renderer has a RenderingContext that holds the state of the renderer.
For example, it holds the different coordinate systems that the rendering takes
place in. The mapCS is the coordinate system that each layer is transformed
into. The deviceCS is the device coordinate system. Each "unit" is a pixel of
device-dependent size. The RenderingContext also encapsulates the clip regions
of the view area and the scale that the map is displayed in.

- 9 -

A RenderedLayer contains the functionality for rendering a “layer.” A
RenderedLayer may be as simple as rendering a scalebar to as complex as
rendering a thousand features.

There are four main types of RenderedLayers, see Figure 2: J2D RenderLayer.

• The RenderedGeometries is a collection of j2d geometry objects that are
the rendered shapes for a given coordinate system. In addition to the
shape data, geometries in a RenderedGeometries object have a style that
will be applied to the geometry.

• A RenderedGridCoverage is an object that provides the functionality for
rendering grid coverages.

• RenderedLegends and the subclass RenderedMapScale create and render
the legend of the features onto the map and display the current scale of
the map.

• A RenderedMark is a set of marks and/or labels to be rendered. Marks
can have different sizes and orientations (for example, a field of wind
arrows).

Figure 2: J2D RenderLayer

- 10 -

5.2 Strengths
The j2d renderer is a full-featured efficient renderer. In its current state of
development the renderer has the capabilities of Feature and Coverage rendering.
It accepts a Map Context and a Graphics2D object as input. The Map Context
contains a feature collection and the styling (SLD compatible), to be used to draw
the collection. The renderer renders the features in the Map Context; a Coverage
is represented as a special Feature, and draws the features to the Graphics2D.

The j2d renderer also provides very quick and optimized performance when
performing the common tasks of zooming and panning because of the large cache
it maintains. The last requirement j2d satisfies is functionality for reprojection of
the feature data. The j2d renderer does not require that all layers in the Map
Context be in the same coordinate system. A component of the j2d renderer, the
RenderingContext, transforms the features in to one, user-defined, coordinate
system before rendering the data to the Graphics2D object.

5.3 Weaknesses
If a map to be drawn consists of 2 million rivers (a very reasonable number), then
the j2d renderer must keep in memory 2 million shapes. A simple shape may
have four points each of which must have at least two coordinates to identify its
location in space. In such a case, the renderer must have more than 128
megabytes of memory allocated for the shapes. This example is an optimistic
example that assumes simple shapes and does not take into account the shapes
styling.

This example illustrates that the j2d renderer is not scalable enough to meet the
rendering requirements of the uDig project. The designers of the j2d renderer
acknowledge the need for a large amount of memory, and in order to reduce the
amount of memory used by the cache, the coordinates in the shapes are stored
as floats. However, another of the uDig requirements specify that double
accuracy is required. Another flaw of the j2d Renderer is that it is not threaded,
so the entire map must be rendered before anything is displayed and control is
returned to the user.

- 11 -

6 GEOTOOLS LITE RENDERER

The Geotools Lite renderer is the mirror image of the j2d renderer's compromises.
The Lite Renderer is intended to use a very small memory footprint, and is
therefore very scalable, but not efficient with regards to tasks such as zooming
and panning.

6.1 Basic Design

Figure 3: Lite Renderer

The Lite renderer has a very simpl e architecture. The Lite renderer has a map
context providing the data for rendering. There are LiteShapes, LineIterators,
GeomCollectionIterators and GlyphRenderers, which are created as needed for
rendering the features. The design also has a GridCove rageRenderer that
renders grid coverages, although SLD support for grid coverages is not yet
implemented.

- 12 -

6.2 Strengths
The strength of the Lite Renderer is primarily is scalability. It renders data as it
is read from disk and caches nothing. The accuracy of the data and the results
from the transforms and calculations are in double precision until they are
drawn to the graphics2D object. As with the j2d renderer, the Lite renderer takes
a map context, which has feature layers, grid coverages and SLD styles and
renders it all to a Graphics2D. One of the best features of the Lite renderer is
that it does not wait for all the features to be loaded into memory to begin
displaying the data. As soon as the data begins to arrive the renderer starts
rendering the data.

6.3 Weaknesses
The main weakness of the Lite renderer is that it does not cache any information
so common zooming and panning tasks are very inefficient. In addition, the Lite
Renderer does not have SLD support for rendering grid coverages and finally, it
does not provide any support for reprojection.

- 13 -

7 JUMP RENDERER

The JUMP renderer is a well-designed and efficient balancing of requirements. In
many ways it is similar to the j2d renderer. It has a cache so that it can zoom
and pan efficiently. The rendering is based on something similar to rendered
layers but it is a threaded renderer that has double precision accuracy.

7.1 Basic Design

Figure 4: JUMP Basic Architecture

Similar to the j2d renderer, each layer has its own renderer. In JUMP each layer
has a LayerRenderer, which usually has an ImageCachingRenderer or a
SimpleRenderer. When the number of features in a layer is small (less than
100) the SimpleRenderer is used to render the layer. Layers with more features
use the ImageCachingRenderer. The ImageCachingRenderer caches images of
the view area so that a layer is not rendered every time the view must be
refreshed. For example, if a view is minimized and then later restored, the
cached images are used to refresh the view, instead of needlessly rendering the
layer.

- 14 -

The child classes of the FeatureCollectionRenderer are “decorators” for the
Simple and ImageCaching renderers. In this instance, they literally decorate the
layers by determining which style to render the class with. The
AbstractSelectionRenderer determines the style for selected features and the
LayerRenderer determines the styles of the other layers, usually by looking up
the current styling settings in the LayerViewPanel.

The RenderingManager handl es refresh events and determines which layers are
visible. When layers are modified or the view changes, the RenderingManager
determines which layers must be re-rendered and which layers can refresh from
their cached images, if they have caches.

All Renderers have access to their LayerViewPanel. The LayerViewPanel contains
much of the rendering state. For example the LayerViewPanel provides access to
the size of the display area, the images that are selected, the user defined styles,
etc...

7.2 Strengths
One of the JUMP renderer's main strengths is the efficiency of zooms and pans,
which are optimized for performance. JUMP renders both features and grid
coverages. JUMP has double precision accuracy and has support for feature
selection.

7.3 Weaknesses
The JUMP renderer is well designed; unfortunately it keeps all the features in
memory so the memory footprint is very large. It also doesn't cache rendered
shapes so the zooming and panning is less efficient than the j2d renderer,
although it is faster than Lite Renderer because the features are kept in memory.
In addition to not being scalable, JUMP does not provide support for Style Layer
Descriptors. However, given the flexibility of the JUMP styling design, it would
not be a major refactoring project to pr ovide SLD support. JUMP also does not
provide the reprojection infrastructure that j2d possesses. It should be noted
that an unreleased version of JUMP is reported to provide reprojection support.
The current JUMP renderer assumes that the features have either been
reprojected previously or are already in the required coordinate system. The final
weakness that concerns the uDig project is that JUMP does not begin rendering
until the entire feature set is loaded into memory. The instant feedback that
uDig requires is not satisfied.

- 15 -

8 SWT OPENGL PLUG-IN

The SWT OpenGL plug-in framework was briefly considered but the idea was
quickly discarded for a number of reasons. First the plug-in is currently purely
experimental, second, most of the requirements needed would have to be
developed and finally there are only plug-in implementations for Windows and
Linux Motif platforms. The benefit of using the OpenGL plug-in is that it would
most likely be the most efficient because OpenGL is closely tied to graphics
hardware.

- 16 -

9 CONCLUSION

It can be concluded that each renderer have strengths that can be useful and
weaknesses that are unacceptable. The j2d renderer is efficient, well designed
and provides many useful features. However, j2d has an unacceptably large
memory footprint causing major problems with large datasets. The Lite renderer
is the only renderer that meets the scalability requirements but it is also
immature when compared to the j2d renderer and the JUMP renderer. The Lite
renderer also misses many of the necessary features required by the uDig
project. JUMP has a similar set of strengths and weaknesses to the j2d renderer
but also has a license associated with it that is prohibitive and therefore is more
useful as a source of inspiration and design solutions than a repository of code.
Finally, the SWT OpenGL plug-in is immature and has very few of the features
required. Therefore it is recommended that the Geotools j2d and Lite renderers
form the basis of the implementation and the JUMP renderer be used as a source
for design considerations.

