
UDIG Printing Technologies Report

June 14, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Richard Gould
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7
 E-mail: rgould@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

UDIG PRINTING TECHNOLOGIES REPORT..1

TABLE OF CONTENTS ...2

TABLE OF FIGURES ...2

1 INTRODUCTION ..3

2 OVERVIEW OF UDIG..4

3 OVERVIEW OF PRINTING REQUIREMENTS ..5

4 JAVA PRINTING...6
4.1 HISTORY OF JAVA PRINTING...6
4.2 SDK VERSION 1.2 – JAVA PRINT API...7
4.2.1 Example ..10

4.3 PRINTING TO PDF FORMAT ..11
4.4 SDK VERSION 1.4 – JAVA PRINT SERVICE...12
4.4.1 Example ..13

5 JFREEREPORT ...14

6 SWT PRINTING API...15
6.1.1 Example ..16

TABLE OF FIGURES

Figure 1 – OpenGIS Spatial Infrastructures..4
Figure 2 – Java Print API Native Dialog Screenshot ..8
Figure 3 – JFreeReport Demo Screenshot... 14

- 3 -

1 INTRODUCTION

This document outlines the evaluation of available printing technologies and
their capabilities in order to determine which technology to use in the
development of uDig.

The choice of an appropriate printing technology is a critical aspect of the uDig
project.

Printing technology depends on several factors:

• Close to Cartographic Quality Output

• Cross-platform compatibility

• Ability to print to PDF

We found a limited number of printing solutions for the Java platform and have
focused on the native Java printing support and SWT. The requirement to print
PDF files seems best met by a combination of Java Platform printing and the use
of an open-source PDF library.

- 4 -

2 OVERVIEW OF UDIG

The User Friendly Desktop Internet GIS for OpenGIS Spatial Data Infrastructures
project (uDig) will create an open source desktop GIS application, to make
viewing, editing, and printing data from CGDI and local data sources simple for
ordinary computer users.

Open source components are a critical part of the CGDI vision, because they
allow organizations to deploy infrastructure widely, in a distributed fashion,
without incurring multiple licensing fees. Open source components are also the
most tractable for fast support of new OpenGIS interoperability standards.

There are already many different pieces of open source software that implement
OpenGIS server standards: Mapserver implements WMS, GeoServer implements
WMS and WFS-T, PostGIS implements SFSQL, DeeGree implements WMS and
WFS, and so on. However, there is not a single piece of desktop software capable
of binding information from all these servers together into a unified desktop view.
uDig is the open source application which will bring CGDI data sources to the
desktop, and integrate them with local data sources for standard business
processes – data viewing, data editing, and data printing.

Spatial
Database

File Based
GIS Data Mapserver

WMS

GeoServer
WFS-T
WMS

R/W

R

R/W

R

R/W

R

Desktop
Internet

GIS

• WFS Client

• WMS Client
• Editing Tools
• Printing

• Local Data
• Cross Platform

Figure 1 – OpenGIS Spatial Infrastructures

- 5 -

3 OVERVIEW OF PRINTING REQUIREMENTS

It is critical for the success of uDig that an appropriate printing technology is
implemented. Users of uDig should be able to create standard and large format
cartographic output.

The printing technologies will be evaluated on the following criteria:

• Accuracy, with regards to pixel orientation and spacing

• Cross-platform compatibility

• Ability to print to large-scale printers (e.g., Plotters)

• WYSIWYG – What is displayed on screen is exactly what is printed

• Ability to handle a large volume of vector information

• Integration with Geotools2 Rendering Pipeline

To address some of these issues it would be extremely helpful to output Adobe
PDF files so we can rely on local ports of the Acrobat Reader program as an
alternative way to provide physical output should any issues arise. It also
provides an alternative method to digitally transfer outputs between individuals.

- 6 -

4 JAVA PRINTING

4.1 History of Java Printing
Taken from the Java Print Service API User Guide:

Basic printing support for the Java platform was first introduced in the
Java Development Kit, version 1.1 in 1997. The JDK 1.1 printing API
provided developers with a basic framework for printing the user-interface
content from client applications. JDK 1.1 printing, also called the AWT
Printing API, was designed around the java.awt.PrintJob class, which
encapsulates a printing request. The PrintJob class creates a subclass of
Graphics, which implements the rendering calls to image the page.

In 1998, the SDK 1.2 advanced printing on the Java platform with the
java.awt.print package by allowing applications to print all Java 2D
graphics, which includes 2D graphics, text, and images.

For the SDK version 1.3, the JobAttributes and PageAttributes classes
were introduced to AWT printing so that client applications could specify
the properties of a print job and the attributes of a page.

The Java Print Service was introduced in SDK version 1.4, elaborating on the
Java Print API. Here is a list of features that the new service adds to Java
Printing, taken from the Java Print Service API User Guide:

• Both client and server applications can discover and select printers based
on their capabilities and specify the properties of a print job. Thus, the
JPS provides the missing component in a printing subsystem:
programmatic printer discovery.

• Implementations of standard IPP attributes are included in the JPS API as
first-class objects.

• Applications can extend the attributes included with the JPS API.

• Third parties can plug in their own print services with the Service Provider
Interface.

- 7 -

4.2 SDK version 1.2 – Java Print API
The Java Print API introduced in SDK 1.2 uses a callback system and manages
the printing process, similar to how it manages the AWT widgets. The application
notifies the printing system that it wishes to print. When the printer is ready to
receive data, it requests the pages from the application.

From the Java2D Tutorial:

This callback printing model enables printing to be supported on a wide
range of printers and systems. It even allows users to print to a bitmap
printer from a computer that doesn't have enough memory or disk space
to hold the bitmap of an entire page. In this situation the printing system
will ask your application to render the page repeatedly so that it can be
printed as a series of smaller images. (These smaller images are typically
referred to as bands, and this process is commonly called banded
printing.)

To support printing, an application needs to perform two tasks:

• Job control--managing the print job

• Imaging--rendering the pages to be printed

- 8 -

Figure 2 – Java Print API Native Dialog Screenshot

- 9 -

Pros:

• Provides complex functionality

• Supports printing multiple page layouts in one print job

• Supports printing jobs larger than the current memory can hold

• Mature

• Abundance of quality documentation

• What you see is what you get

Cons:

• Does not support discovery of printers based on their capabilities

• Print job size depends on driver support

Abilities:

• Printing to PDF (through external library)

• Printing to Paper

• Is Cross Platform

• Uses native dialogs (maybe, haven’t tested linux yet)

• Prints Vectors

• Prints Rasters

• Prints Vectors on Rasters

• Accuracy of Line widths seems to be very good.

• Prints Text

• Rendering of greater than 1/72 inch

The Java Printing API seems to be the most suitable API for our needs. It
supports printing to paper, as well as to PDFs (through use of an external
library). It works on every platform that Java runs on, using the native print
dialog, if available.

The API supports drawing text, vectors, rasters, and vectors on rasters. The
accuracy of the data being printed is often more accurate than what is rendered
on the screen, especially regarding line width. It is capable of rendering the
printing graphics at greater than 1/72 of an inch.

It easily supports printing to pages of varying sizes, allowing output to pages as
large as each printer driver supports.

- 10 -

4.2.1 Example
Here is an example application that draws various shapes on the screen and will
print when a button is pressed, taken from the Java2D Tutorial:

public class ShapesPrint extends JPanel
 implements Printable, ActionListener {
...
public int print(Graphics g, PageFormat pf, int pi)
 throws PrinterException {
 if (pi >= 1) {
 return Printable.NO_SUCH_PAGE;
 }
 drawShapes((Graphics2D) g);
 return Printable.PAGE_EXISTS;
}
...
public void drawShapes(Graphics2D g2) {
 Dimension d = getSize();
 int gridWidth = 400/6;
 int gridHeight = 300/2;
 int rowspacing = 5;
 int columnspacing = 7;
 int rectWidth = gridWidth - columnspacing;
 int rectHeight = gridHeight - rowspacing;
 ...

 int x = 85;
 int y = 87;
 ...
 g2.draw(new Rectangle2D.Double(x,y,rectWidth,rectHeight));
 ...

The job control code is in the ShapesPrint actionPerformed method.

public void actionPerformed(ActionEvent e) {
 if (e.getSource() instanceof JButton) {
 PrinterJob printJob = PrinterJob.getPrinterJob();
 printJob.setPrintable(this);
 if (printJob.printDialog()) {
 try {
 printJob.print();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 }
}

- 11 -

4.3 Printing to PDF Format
There are several APIs that can be used to print from a graphics object to a PDF
file. The one that looked the most promising is Retep PDF II (available at
http://retep.org/retep/home.do). There is very little modification needed for a
program to use this library as it implements itself on top of the Java Print API.

Other PDF libraries available:

Library /
package License Description

Adobe Acrobat
Reader for Java Freeware Read and display PDF documents. A viewer application and a

JavaBean are available. Works with Java 1.1.8+.

Big Faceless PDF
library Commercial Write PDF documents, with support for various advanced features.

Etymon PJ GPL / Commercial
Read and write PDF documents. There are two versions, classic and
professional. Classic comes under the GPL and requires Java 1.1.
Professional is commercial and requires Java 1.4.

FOP Apache License Write PDF documents, render them from XML/XSL sources.

gnujpdf GPL Write PDF documents. An extension of the retepPDF project.

iText LGPL Write PDF documents. Requires Java 1.2.

jPDFPrinter Commercial (trial
version available)

Pure Java library to write PDF files. Library can be used like a Java
printer job. Thus, existing Java code for printing can be reused to
create PDF files.

JPedal LGPL Read PDF documents. This library can both extract content from
PDFs and rasterize them.

jPDF
Commercial (trial
version available on
request)

Manipulation of PDF files, especially suited for the server side.
Features include PDF generation from templates, splitting, merging,
parsing and encryption. Written in pure Java (requires Java 1.3 or
higher).

PDFBox LGPL Library to access PDF files. A utility to convert to text is included.

PDFlib Commercial Read and write PDF documents. This is a C library which has Java
JNI bindings.

retepPDF GPL Write PDF documents.

Saffron
Document Server Commercial

Reads PostScript (.ps) documents and generates PDF, HTML, RTF,
TIFF, and other formats. Configured as a server for concurrent
document rendering.

SmartJPrint GPL-like Pure Java library to write PDF files. Generates PDF files from Swing
GUI components, provides preview functionality.

XMLMill Commercial, trial
version available Create PDF documents from XML/XSL.

- 12 -

4.4 SDK Version 1.4 – Java Print Service
Taken from the Java Print Service Guide:

The Java Print Service API is an extension of the Java Print API that allows
printing on all platforms. It includes an extensible print attribute set based
on the standard attributes specified in the Internet Printing Protocol (IPP)
1.1 from the IETF. With the attributes, client and server applications can
discover and select printers that have the capabilities specified by the
attributes. In addition to the included StreamPrintService, which allows
applications to transcode data to different formats, a third party can
dynamically install their own print services through the Service Provider
Interface.

The Java Print Service is a new API. As a result, there is not much quality
documentation nor many examples available, and it does not explain itself very
clearly. It does not seem relevant to the development or implementation of uDig.

- 13 -

4.4.1 Example
Taken from Java Print Service Javadocs:

This code demonstrates a typical use of the Java Print Service API: locating
printers that can print five double-sided copies of a Postscript document on size
A4 paper, creating a print job from one of the returned print services, and
calling print.

FileInputStream psStream;
try {
 psStream = new FileInputStream("file.ps");
} catch (FileNotFoundException ffne) {
}
if (psStream == null) {
 return;
}

DocFlavor psInFormat = DocFlavor.INPUT_STREAM.POSTSCRIPT;
Doc myDoc = new SimpleDoc(psStream, psInFormat, null);
PrintRequestAttributeSet aset =
 new HashPrintRequestAttributeSet();
aset.add(new Copies(5));
aset.add(MediaSize.A4);
aset.add(Sides.DUPLEX);
PrintService[] services =
 PrintServiceLookup.lookupPrintServices(psInFormat, aset);
if (services.length > 0) {
 DocPrintJob job = services[0].createPrintJob();
 try {
 job.print(myDoc, aset);
 } catch (PrintException pe) {}
}

Packages persist in javax.print.

- 14 -

5 JFREEREPORT

JFreeReport is a free Java report library. It has the following features:

• full on-screen print preview;

• data obtained via Swing's TableModel interface (making it easy to print
data directly from your application);

• XML-based report definitions;

• output to the screen, printer or various export formats (PDF, HTML, CSV,
Excel, plain text);

• support for servlets (uses the JFreeReport extensions)

• complete source code included (subject to the GNU Lesser General Public
Licence);

• extensive source code documentation;

Figure 3 – JFreeReport Demo Screenshot

JFreeReport uses the Java Print API to do its printing and may integrate nicely
with uDig, if it suits our needs.

- 15 -

6 SWT PRINTING API

The SWT API offers its own printing aspect. It is relatively new, consisting only of
three classes. It is a very bare-bones system, allowing one to expand as needed.

Pros:

• Simple to use
• Works well with the SWT graphics package

Cons:

• Lacking documentation, especially with regards to support of page layouts
and formats.

• The GTK implementation of SWT is missing printing.

• A lot more overhead is required.

• Does not work well with Java2D.

SWT printing support in GTK notes:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=24796

- 16 -

6.1.1 Example
Example code taken from the Eclipse site:

/*
 * Copyright (c) 2000, 2003 IBM Corp. All rights reserved.
 * This file is made available under the terms of the Common Public License v1.0
 * which accompanies this distribution, and is available at
 * http://www.eclipse.org/legal/cpl-v10.html
 */

/*
 * Printing example snippet: print "Hello World!" in black, outlined in red, to default
printer
 *
 * For a list of all SWT example snippets see
 * http://dev.eclipse.org/viewcvs/index.cgi/%7Echeckout%7E/platform-swt-
home/dev.html#snippets
 */
import org.eclipse.swt.*;
import org.eclipse.swt.widgets.*;
import org.eclipse.swt.graphics.*;
import org.eclipse.swt.printing.*;

public class Main {

public static void main (String [] args) {
 Display display = new Display();
 Shell shell = new Shell(display);
 shell.open ();
 PrinterData data = Printer.getDefaultPrinterData();
 if (data == null) {
 System.out.println("Warning: No default printer.");
 return;
 }
 Printer printer = new Printer(data);
 if (printer.startJob("SWT Printing Snippet")) {
 Color black = printer.getSystemColor(SWT.COLOR_BLACK);
 Color white = printer.getSystemColor(SWT.COLOR_WHITE);
 Color red = printer.getSystemColor(SWT.COLOR_RED);
 Rectangle trim = printer.computeTrim(0, 0, 0, 0);
 Point dpi = printer.getDPI();
 int leftMargin = dpi.x + trim.x; // one inch from left side of paper
 int topMargin = dpi.y / 2 + trim.y; // one-half inch from top edge of
paper
 GC gc = new GC(printer);
 Font font = gc.getFont(); // example just uses printer's default font
 if (printer.startPage()) {
 gc.setBackground(white);
 gc.setForeground(black);
 String testString = "Hello World!";
 Point extent = gc.stringExtent(testString);
 gc.drawString(testString, leftMargin, topMargin +
font.getFontData()[0].getHeight());
 gc.setForeground(red);
 gc.drawRectangle(leftMargin, topMargin, extent.x, extent.y);
 printer.endPage();
 }
 gc.dispose();
 printer.endJob();
 }
 printer.dispose();
 while (!shell.isDisposed ()) {
 if (!display.readAndDispatch ()) display.sleep ();
 }
 display.dispose();
 }
}

