
UDIG Platform Research

April 26, 2004

 Submitted To: Program Manager
 GeoConnections
 Victoria, BC, Canada

 Submitted By: Jody Garnett
 David Zwiers
 Richard Gould
 Refractions Research Inc.
 Suite 400 – 1207 Douglas Street
 Victoria, BC V8W 2E7
 E-mail: dzwiers@refractions.net
 Phone: (250) 383-3022
 Fax: (250) 383-2140

- 2 -

TABLE OF CONTENTS

UDIG PLATFORM RESEARCH...1

TABLE OF CONTENTS..2

TABLE OF FIGURES..3

1 INTRODUCTION ...4

2 UDIG OVERVIEW................................5

3 APPLICATION FRAMEWORK BACKGROUND................................6
3.1 EXISTING FRAMEWORKS...6
3.2 USER INTERFACE TOOLKITS..9
3.3 OPEN SOURCE GIS LIBRARIES ..10

4 EVALUATION METHOD ..12

4.1 MARKET POSITIONING..12
4.2 PROFESSIONAL APPEARANCE..12
4.3 PLUG-IN MODEL ..13
4.4 APPLICATION FRAMEWORK ..13
4.5 COMPATIBILITY WITH GIS LIBRARIES..14
4.6 COMMUNITY ACCEPTANCE................................14

5 NET BEANS (FORTE FOR JAVA)................................15
5.1 QUICK SUMMARY...15
5.2 APPLICATION...16
5.3 PLUG-IN DEVELOPMENT...18

6 ECLIPSE................................19
6.1 QUICK SUMMARY...19
6.2 APPLICATION...20
6.3 PLUG-IN DEVELOPMENT...23

7 JUMP UNIFIED MAPPING PROJECT (JUMP)..24
7.1 QUICK SUMMARY...24
7.2 APPLICATION...25
7.3 PLUG-IN DEVELOPMENT...27

- 3 -

TABLE OF FIGURES

Figure −− 1 OpenGIS Spatial Infrastructures... 5

Figure −− 2: NetBeans in Windows... 17

Figure −− 3: NetBeans in Linux.. 17

Figure −− 4: Eclipse Linux (GTK/Motif)... 21

Figure −− 5: Eclipse Windows .. 21

Figure −− 6: JUMP on Windows.. 25

- 4 -

1 INTRODUCTION

This document outlines our evaluation of application and plug-in frameworks in
order to determine a platform with which to develop uDig. The choice of the
application framework is critical to the success of the uDig project.

Application Framework depends on several factors:

• Professional Appearance

• Accessible Plug-In model

• Community Acceptance

• Compatibility with available GIS libraries

• Market Position

A successful framework must also balance the requirement of the project to
finish in a timely manner, while providing a strong foundation for an active open-
source development community.

- 5 -

2 UDIG OVERVIEW

The User Friendly Desktop Internet GIS for OpenGIS Spatial Data Infrastructures
project (uDig) will create an open source desktop GIS application, to make
viewing, editing, and printing data from CGDI and local data sources simple for
ordinary computer users.

Open source components are a critical part of the CGDI vision, because they
allow organizations to deploy infrastructure widely, in a distributed fashion,
without incurring multiple licensing fees. Open source components are also the
most tractable for fast support of new OpenGIS interoperability standards.

There are already many different pieces of open source software that implement
OpenGIS server standards: Mapserver implements WMS, GeoServer implements
WMS and WFS-T, PostGIS implements SFSQL, DeeGree implements WMS and
WFS, and so on. However, there is not a single piece of desktop software capable
of binding information from all these servers together into a unified desktop view.
uDig is the open source application which will bring CGDI data sources to the
desktop, and integrate them with local data sources for standard business
processes – data viewing, data editing, and data printing.

Spatial
Database

File Based
GIS Data Mapserver

WMS

GeoServer
WFS-T
WMS

R/W

R

R/W

R

R/W

R

Desktop
Internet

GIS

• WFS Client
• WMS Client
• Editing Tools
• Printing
• Local Data
• Cross Platform

Figure −− 1 OpenGIS Spatial Infrastructures

- 6 -

3 APPLICATION FRAMEWORK BACKGROUND

This section provides an overview of the several factors used to evaluate
Application Frameworks for uDig.

3.1 Existing Frameworks
The Java community plays host to several advanced application frameworks that
are possible considerations for the uDig project.

3.1.1 NetBeans

NetBeans is the open source project associated with the Forte for Java offering
from Sun. It was purchased by Sun in 1999 to fill out their development
platform.

When Sun released NetBeans to the open source community in 2001, developers
started utilizing the platform it was based on to develop their own modular
applications.

NetBeans features:

• A significant amount of built-in management modules

• Is based on Swing widget toolkit

• A large community

NetBeans limitations:

• Lack of quality documentation

• The use of Swing provides an interface with poor platform integration

• Difficulty developing plug-ins could hinder community involvement

Resources:

• http://www.netbeans.org/

• http://wwws.sun.com/software/sundev/jde/

- 7 -

3.1.2 Eclipse

Eclipse presents itself as an “Integrated Development Environment for anything,
and nothing in particular”. Eclipse was started as a research project by IBM,
and has recently been handed over to an Eclipse Board of Stewards. IBM uses
Eclipse as the starting point for most of their Development offerings, including
the WebSphere and Rational software portfolios.

As part of the Eclipse 3.0 development, this successful IDE is spinning off an
Application Framework.

Eclipse is based on the use of the Standard Windows Toolkit (SWT).

Eclipse Features:

• Considerable marketing momentum and community excitement

• Use of SWT provides an Professional Appearance on Windows

• Mature, well documented Plug-In Model

Eclipse Limitations:

• Application Framework is a recent addition to Eclipse 3.0 scheduled for
summer release

• Use of SWT on GTK based Linux systems does not perform adequately

• Use of SWT may alienate members of the community from Linux, or those
seeking to reuse components in Swing based applications

Eclipse represents a clear win on many fronts. Any outstanding questions center
around the use of the SWT windowing toolkit.

Resources:

• http://www.eclipse.org/

- 8 -

3.1.3 Jump Unified Mapping Platform (JUMP)

JUMP is the creation of the Victoria BC based company Vivid Solutions. Vivid
has a strong reputation in the GIS community through the development of the
Java Topology Suite (JTS). JUMP is an offshoot of this project with many of the
same goals as the uDig project.

JUMP Features:

• An active plug-in development community

• JTS based Geometry

• JUMP Feature Model

Limitations of JUMP:

• Feature Model is limited by memory

• Feature Model does not support nested Attributes, or multiple Geometries

• Plug-Model is well documented, but not well defined

Refractions Research has a strong history of collaboration with both Vivid
Solutions and the JUMP project. While CVS access is public, project involvement
(and CVS commit status) is relatively closed.

To be useful for the uDig project, JUMP would need to be converted to use the
Geotools2 definition of Feature, and the GeoTools2 DataStore API.

Resources:

• http://www.vividsolutions.com/jump/

- 9 -

3.2 User Interface Toolkits
There are several User Interface toolkits available to the Java developer.

3.2.1 Abstract Window Toolkit (AWT)

AWT provides a mapping to the native OS supplied widget set against a common
Java widget set. This mapping is provided by an Abstract Factory Pattern centred
around the AWTToolkit class.

AWT has fallen into disfavour over the years; the task of isolating the AWT widget
model from the Platform Specific Widgets used for user interaction has proved
difficult. This limitation is often presented as the paraphrase “Write once, test
everywhere”.

AWT has seve ral limitations:

• The performance of AWT is limited by the creation and mapping events
between AWT and native widgets. This overhead limits the porting of Java
applications to small hand held devices.

• Impedance mismatch between Native Widgets and AWT model
For example, Mac’s AWT implementation forces users to hold down key
combinations to mimic the AWT model of multiple button mice.

3.2.2 Swing

Swing represents an attempt to eliminate the two major limitations of the AWT
toolkit. Swing dispenses with the native widgets altogether, preferring instead to
provide a “pure Java” solution with associated cross platform compatibility.

To ease the pain of having Java applications appear different, a very strong “Look
and Feel” separation has been imposed on the Swing API. The intention has been
to allow the development of Look and Feel implementations that mimic the
appearance of native widgets. In practice this has resulted in Swing applications
that look a year or two out of date, and never quite work exactly as users expect.

3.2.3 Standard Window Toolkit (SWT)

SWT represents a rethinking of the Java widget set problem by IBM. It represents
a return to the roots of the problem and takes an approach similar to AWT.
Native widgets are mapped to a set of Java classes.

SWT provides its mapping as a platform specific jar with associated native code.
The advantage of this approach is that the SWT API is well defined and easy to
implement as native code. This contrasts with the AWT approach in which
considerable effort was spent focusing on a cross platform common model.

As part of Eclipse 3.0, SWT has gained the ability to integrate with AWT and
Swing, including the embedding of normal AWT/Swing widgets in SWT
applications.

- 10 -

3.3 Open Source GIS Libraries
The open source Java community is very active and has produced a large body of
high quality code.

While several of these libraries overlap each other the development community is
in constant communication and seeks to avoid duplication. An example of this is
Geotools’ plans to switch over to GeoAPI interfaces, as they are made available.

3.3.1 GeoTools (GT2)

Geotools 2 is an open source, Java GIS toolkit for developing OpenGIS compliant
solutions. It has a modular architecture, which allows extra functionality to be
added or removed easily. Geotools 2 aims to support Open GIS and other
relevant standards as they are developed.

The aim of the project is to develop a core set of Java objects in a framework,
which makes it easy for others to implement OGC-compliant, server-side services
or provide OGC compatibility in standalone applications or applets. The GeoTools
2 project comprises a core API of interfaces and default implementations of those
interfaces.

Capabilities:

• Feature Model

• Coordinate Reference System

• Reprojection

• Feature Loading

• Grid Loading

• Style Layer Descriptor

• Widget Independent Rendering

• Validation

• Graph and Network support

- 11 -

3.3.2 Java Topology Suite (JTS)

The Java Topology Suite (JTS) is an API providing a spatial object model and
fundamental geometric functions. It implements the geometry model defined in
the OpenGIS Consortium Simple Features Specification for SQL.

Capabilities:

• Geometry classes

• Stable Spatial Operations

• Spatial predicates (based on the DE-9IM model)

• Overlay functions (intersection, difference, union, symmetric difference)

• Buffer

• Convex Hull

• Area and distance functions

• Topological validity checking

3.3.3 GeoAPI

There is an enormous amount of effort being expended out in the Open Source
community towards building GIS solutions. GeoAPI aims to reduce duplication
by providing a neutral, interface only, API which projects can use to interoperate.

Existing mappings:

• CRS

• Grid Coverage

Future Mappings:

• Geometry Interface

• Feature

• Metadata

3.3.4 OpenMap

OpenMap is a JavaBeans based toolkit for building applications and applets
needing geographic information. OpenMap is not OGC based and is therefore not
suitable for the uDig project.

- 12 -

4 EVALUATION METHOD

We will evaluate the Application Frameworks based on several areas of interest
as outlined in the following sections.

4.1 Market Positioning
Each framework provides its own advantages and disadvantages from a
marketing perspective. Each framework will be considered in terms of its broader
acceptance as a measure of its life expectancy. Any marketing opportunities will
also be considered.

Specifics:

• Framework history and recent developments

• Framework short term goals (over the course of uDig development)

• Framework plans over two years

4.2 Professional Appearance
The evaluation of application appearance is subjective in nature. Our evaluation
of acceptance is based on the end-user’s experience. The resulting application
must appear to be a native application, and operate as expected.

At one level this evaluation comes down to an appraisal of the User Interface
Toolkit used by each Framework.

• AWT: No framework is based on the AWT toolkit

• Swing: Provides poor integration with the Windows Desktop, user interface
“look” is not considered sufficient.

• SWT: Provides excellent integration on Windows Desktop, but poor
performance on Linux.

Specifics:

• Visual Integration with OS

• User Interface Responsiveness

• Use of Drag and Drop

• Use of native file selectors

- 13 -

4.3 Plug-In Model
The accessibility of the plug-in model is important to the long-term success of the
uDig project. In order for an open source project to succeed it is very helpful to
allow developers to contribute code based on modules or plug-ins.

This separation allows developers to work independently, and often at arms
length from the uDig project while still providing value to end-users.

Our ability to solicit open source contributions will often be reduced to how long
it takes an interested party to contribute a feature to the application that they
desire.

Specifics:

• Impression of Plug-In Design

• Documentation accessibility and quality

• Quickstart or tutorial showing a respect for new developers

• User Interface guidelines

• Version controlled plug-in management

• Time required to create a simple Plug-In

• Average Plug-In Size

4.4 Application Framework
A successful project is one in which the desired product is completed within the
allocated budget. To this end, it is important for us to understand how cost
effective our time is for each platform.

There are multiple factors, which can affect the tool -adoption of a product, some
of which include user interface appearance, usability, and installation time.
Product size indirectly affects tool adoption, and should be considered. Overly
large products can hurt tool adoption in two ways: length of download or length
of installation times.

Specifics:

• Time required to create a simple Stand-Alone Application

• Application Size

- 14 -

4.5 Compatibility with GIS libraries
The most mature renderers available are currently part of the Geotools2 library.
The available rendering API offers widget independence and Style Layer
Descriptor (SLD) support. This represents significant intellectual property that
uDig should leverage in order to be successful (and standards compliant).

On a practical level, geotools2 provides two implementations of their rendering
API, both based on the Swing API. If this proves insufficient based on
performance we may need to explore other rendering technologies. A separate
rendering technologies report is being prepared.

Specifics:

• Use of geotools2 “LiteRenderer”

• Availability of OpenGL support or Java3D

4.6 Community Acceptance
We are concerned with project acceptance with several target communities.

Specifics:

• Target uDig user base (Organizations with OGC based workflow)

• Geotools2 development community

• JUMP development community

- 15 -

5 NET BEANS (FORTE FOR JAVA)

5.1 Quick Summary
Evaluation Status

Integration None

Responsiveness Windows good, Linux great

Drag and Drop Yes

File Selector Swing

History Sun

Short term 3.5 release with redesigned user interface

Long term Supported by Sun, declining market share

Plug-In Design Complicated, hard to learn

Plug-In Size 10.1 KB

Plug-In Dev. Time > 4 hrs

Internal Communication Excellent

Application Size 11.4 MB

Application Dev. Time >1.5 hrs

Documentation Poor

Quickstart No

UI Guidelines Swing User Interface Guidelines

Versioned Yes

LiteRenderer Yes

OpenGL Yes

OGC --

Geotools2 --

JUMP --

- 16 -

5.2 Application

5.2.1 Development Time

When completing this evaluation for the NetBeans platform, we stopped after 1.5
hours as we had not yet found a working example. At this time we were not close
to creating a simple stand-alone application. Therefore we terminated this
experiment.

5.2.2 Documentation Accessibility and Quality

One of the substantial factors when learning a new API is documentation, in
particular the documentation provided for the novice developer.

The NetBeans platform has:

• Very few examples of creating standalone applications using their
framework

• Not provided tutorials including working code

• Out-of-date for the most recent release.

NetBeans failed to provide useful or relevant documentation.

- 17 -

5.2.3 Professional Appearance

The opening appearance of an application can have a huge impact on the
adoptability of a tool, especially a client desktop application. We investigated two
versions of NetBeans: Windows and Linux.

Figure −− 2: NetBeans in Windows

Figure −− 3: NetBeans in Linux

Both of the NetBeans platforms (Figure 2 and Figure 3) appear pleasing to the
eye, and do not represent any immediate shortcomings with respect to the
appearance of the application. As we see in these Figures, the Linux and
Windows versions of NetBeans are almost identical.

5.2.4 Performance

We measured performance through user experiences. We tested each of the
versions of NetBeans, with high levels of success.

Both the Windows and Linux versions of NetBeans performed well, giving timely
user responses. For both versions we do not foresee any performance issues
related to platform choice.

5.2.5 Product Size

The base NetBeans platform, without any plug-ins, or the ability to complete any
tasks is 11.4 MB on Windows. This includes the NetBeans framework, and the
required graphics libraries.

- 18 -

5.3 Plug-In Development

5.3.1 Development Time

A total of four hours was spent attempting to develop a plug-in for the NetBeans
IDE to no avail. It is difficult to say whether we were close or not, as we could
find no working example to compare against.

5.3.2 Documentation Accessibility and Quality

A large factor in designing and implementing a plug-in for a program is
dependant on the amount of quality documentation or tutorials available to get
one started.

A majority of the time spend attempting to develop the plug-in was spent hunting
down documentation, mostly without success. A lot of the work done was
guesswork, along with some probably out of date documentation that was
stumbled upon at one point.

In addition, no working examples or tutorials could be located.

5.3.3 Product Size

The end size of our non-working plug-in totals 11KB, about five times that of a
minimal working Eclipse plug-in. Still, for plug-ins this small, size comparisons
are really irrelevant.

5.3.4 Internal Communication

The NetBeans plug-in communication model is acclaimed as one of its best
features. It make use of a series of well defined abstractions and a mature event
model to allow plug-ins to communicate in an effient manner.

- 19 -

6 ECLIPSE

6.1 Quick Summary
Evaluation Status

Integration Good windows/ Linux GTK, Poor Linux Motif

Responsiveness Windows/ Linux Motif good, Linux GTK bad

Drag and Drop Yes

File Selector Native

History IBM research project

Short term 3.0 target for mid summer, with application
framework and AWT/Swing integration

Long term Recently handed over to an independent body, IBM
and others porting development tools

Plug-In Design Quick to learn, difficult cross plug-in communication

Plug-In Size 2.12 KB

Plug-In Dev. Time 0.5 hrs

Internal Communication Sufficient

Application Size 5.3 MB

Application Dev. Time 1.5 hrs

Documentation Excellent

Quickstart Excellent

UI Guidelines Yes

Versioned Excellent

LiteRenderer Unknown, claimed for 3.0 branch

OpenGL Beta

OGC --

Geotools2 Enthusiastic non-Linux community

JUMP --

- 20 -

6.2 Application

6.2.1 Development Time

When completing this evaluation for the Eclipse platform, we spent 1.5 hours
before a simple application had been completed. This included working through a
tutorial and deploying an empty application.

6.2.2 Documentation Accessibility and Quality

One of the substantial factors when learning a new API is documentation, in
particular the documentation provided for the novice developer.

The Eclipse platform has:

• Multiple concrete examples of creating standalone applications using their
framework

• Tutorials including working code

• Up-to-date for the most recent release.

Creating a sample standalone application using the Eclipse platform was well
documented.

- 21 -

6.2.3 Professional Appearance

The opening appearance of an application can have a huge impact on the
adoptability of a tool, especially a client desktop application.

We investigated three versions of Eclipse: Windows, GTK for Linux and Motif for
Linux.

Figure −− 4: Eclipse Linux (GTK/Motif)

Figure −− 5: Eclipse Windows

In Figures 4 and 5 we see some of the differences in appearance between the
versions. Of the three versions, the Motif version looks the worst. The GTK and
Windows versions are both aesthetically pleasing.

Although it is a performance issue it should be noted that the GTK release of
eclipse was unusable due to performance problems

- 22 -

6.2.4 Performance

We measured performance through user expe riences. We tested each of the three
versions of Eclipse, with varying success.

Both the Windows version and the Linux Motif version performed reasonably
well, without substantial delays. For both of these versions we do not foresee any
performance issues related to platform choice.

Unfortunately, the Linux GTK version did not perform well, and is well below
standard.

The commercial version of Eclipse (WebSphere) has moved to at Linux/qt SWT
implementation to resolve performance problems on Linux platforms. A
linux/fox binding is also underdevelopment.

Refractions could look into licensing the linux/qt version of SWT for uDig,
although restrictions prevent this from being an option for open-source
development. The QT toolkit is being presented as a competitor with Java for
enterprise development.

6.2.5 Product Size

The base Eclipse platform, without any plug-ins, or the ability to complete any
tasks is 5.3 MB on Windows. This includes the Eclipse framework, and the
required SWT libraries.

- 23 -

6.3 Plug-In Development

6.3.1 Development Time

After working at this for fifty minutes, we had a minimal working Eclipse plug-in
that was ready to re-deploy on other systems easily. The process was very
smooth and easy and problem-free.

6.3.2 Documentation Accessibility and Quality

The documentation for Eclipse is extraordinary. It is well organized, readable,
and relevant. Tutorials and working examples are abundant.

The tutorial used for implementing the plug-in explained each step nicely as it
guided us through the process.

6.3.3 Product Size

The final deployable plug-in size totals 2.12 KB. The plug-in itself was very
minimal, consisting of one class that generated a new view pane within Eclipse
itself and displayed a string.

6.3.4 Internal Communication

Internal communication within the Eclipse platform is not well documented, and
may be too specific for our needs. There are sections dedicated within the
Resources package that allow communcation between plug-ins, but they might
be specifically geared for the IDE. Other aspects of the workbench have areas
that other plug-ins can hook into which may be sufficient. For example, an editor
can have a plug-in listen for a save request.

- 24 -

7 JUMP UNIFIED MAPPING PROJECT (JUMP)

7.1 Quick Summary
Evaluation Status

Integration Swing Loose ‘n’ Free based

Responsiveness Painful, slow for large datasets, memory bound

Drag and Drop No

File Selector Swing

History Vivid Solutions Inc. Open Source project

Short term Active development, moving to public plug-in CVS

Long term Refractor into separate projects

Plug-In Design Simple

Plug-In Size 10 kB

Plug-In Dev. Time 1 hr for simple plug-in, 2 weeks for full functionality

Internal Communication Good, similar to a servlet context

Application Size 8.3 mB

Application Dev. Time Already set-up

Documentation Incomplete but of good quality

Quickstart Yes

UI Guidelines None

Versioned 1.1.1

LiteRenderer Requires extensive redesign

OpenGL Requires extensive redesign

OGC Receptive

Geotools2 License incompatibility

JUMP Positive

- 25 -

7.2 Application

7.2.1 Development Time

Jump is already set-up as a standalone application. The application is GPL so
any changes made to the core application must be made available to the
community. Unfortunately though, this takes time as this is not an ‘open-
developer’ project.

7.2.2 Documentation Accessibility and Quality

The documentation is sparse and incomplete. Where documentation exists, the
documents are high quality.

7.2.3 Professional Appearance

JUMP is Swing based and does not provide the desired professional appearance.

Figure −− 6: JUMP on Windows

Specifically:

• Use of MDI interface

• Non standard tree widget

• Toolbars are based on Windows 95 widget set resulting in an application
that stands out against a Windows 2000k or Windows XP installation

To improve this aspect of jump we would follow the Java User Interface guideline,
and upgrade to the JDK 1.5 beta.

Changes of this nature would be considered high risk, as JUMP, while open
source, is not an open-developer project.

- 26 -

7.2.4 Performance

The JUMP Feature model is memory based, resulting in a application that is slow
and memory bound. Initial load from database or shapefile data source must first
be loaded into memory before being used on screen.

The extensive use of progress bars provides immediate feedback for most
operations.

7.2.5 Product Size

The 8.3 MB download size of Jump 1.1.1 is very attractive.

- 27 -

7.3 Plug-In Development

7.3.1 Development Time

Initial plug-in development time can be completed in less than one hour. In this
case the tutorials aided greatly in plug-in development.

Resources:

• http://www.vividsolutions.com/jump/bin/JUMP Developer Guide.pdf

7.3.2 Documentation Accessibility and Quality

The plug-in documentation, where available, is of high quality. At times we found
the documentation was incomplete.

We also found keyboard limitations involving GUI shortcuts and menu selections.

7.3.3 Product Size

Requires manual install, and modification of application plugin.xml file. JUMP
plug-ins average 10 kB in size.

7.3.4 Internal Communication

JUMP uses a model similar to that of a servlet context to allow plug-ins to
communicate with each other. The use of black board pattern at both the task
and application level is provided for informal ad hock communication between
consitlations of plug-ins.

This enabled plug-ins to dynamically discover and communicate with each other
with out direct a dependency. This is a strong well understood model similar to
the J2EE use of Application, Servlet and Request context.

For communication with the existing JUMP Framework plug-ins make use of
direct dependency and the Framework event model. This presents a clear
separation between plug-ins and the JUMP Framework in terms of
communication style.

As a bridge several JUMP derived applications post a large grained object model
onto the clipboard where other plug-ins can register for specific events. This does
introduce direct dependency into inter plug-in communication with associated
configuration complexity.

